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1
General introduction

This thesis focuses on the behavior of vibrated granular matter when the

effect of the ambient air is included. Granular matter is any material that

consists of many grains, such as sand or flour. In many phenomena, the

"Stokesian" forces (drag, air pressure) on the particles and the "Newtonian"

forces (from collisions and gravity) compete for dominance, resulting in

interesting collective behavior.

1.1 Sir Isaac Newton and Sir George Gabriel Stokes

Sir Isaac Newton (1643-1727) was apart from one of the greatest physicists

and mathematicians of all times, also an astronomer, natural philosopher,

Figure 1.1: Sir Isaac Newton and Sir George Gabriel Stokes.
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2 1. GENERAL INTRODUCTION

alchemist and theologian [1]. In June 1661, he was admitted to Trinity

College, Cambridge. His Philosophiæ Naturalis Principia Mathematica,

published in 1687, is considered to be the most influential book in the his-

tory of science. In this work, Newton described universal gravitation and

the three laws of motion, laying the foundation for classical mechanics,

which dominated the scientific view of the physical universe for the next

three centuries and is the basis for modern engineering. Newton showed

that the motions of objects on Earth and of celestial bodies are governed

by the same set of natural laws. These laws also determine the motion of

the particles in granular matter. For this reason, we refer to the forces on

the particles from collisions and gravity as the “Newtonian” forces.

Sir George Gabriel Stokes, (1819-1903), was a mathematician and

physicist, who at Cambridge made important contributions to fluid dy-

namics (including the Navier-Stokes equations), optics, and mathemati-

cal physics (including Stokes’ theorem) [2]. In 1851, George Gabriel Stokes

derived an expression, now known as Stokes’ law, for the frictional force

- also called drag force - exerted on spherical objects with very small

Reynolds numbers (e.g., very small particles) in a viscous medium. For

this reason, we refer to the forces that that are exerted on the particles by

the ambient air as the “Stokesian” forces.

1.2 Granular matter

Granular materials can be encountered everywhere in everyday life, for

example sand, sugar, or rice, and in natural processes such as avalanching

and desert formation. Also in industry granular materials are abun-

dant, since most raw materials are supplied in the form of grains, and

a thorough understanding of granular matter is essential in order to

efficiently handle these materials. Estimates are that we waste 40 % of

the capacity of our industrial plants because of problems related to the

transport of granular materials [3]. Producing homogeneous mixtures

- very important in e.g. the pharmaceutical industry - is surprisingly

difficult due to the tendency of granular materials to segregate [4–6].

The particles in granular matter interact with each other through

dissipative contact forces; without an external driving their kinetic energy

is rapidly lost. Depending on the amount of energy that is present in the

system, granular matter can appear to behave like a solid, fluid or gas

(see Fig. 1.2). However, granular matter exhibits phenomena that are not

present in any of these familiar forms of matter (see Fig. 1.3), and should
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Figure 1.2: Granular matter can behave like either a solid (sand castle), a liquid
(hourglass), or a gas (sandstorm).

therefore be considered an additional state of matter in its own right [7, 8].

A great deal of progress has been made in the last few decades in

explaining the rich and complex behavior of granular matter. However,

the recent boom of papers on the subject has dealt almost exclusively

with systems in which the effect of the ambient air is ignored, assuming

that the motion of the particles is governed by gravity and mechanical

contact forces only. While this is a valid approximation when the particles

are large (diameter > 1 mm), for smaller particles the air actually has a

pronounced influence and must be taken into account.

In this thesis we focus on particles of intermediate size, where the

“Stokesian” forces (drag, air pressure) and the “Newtonian” forces (from

collisions and gravity) compete for dominance. Striking examples are

Faraday heaping, where the Newtonian forces drive the particles outward

while the Stokesian forces drive the particle to the center of the heap (see

Fig. 3.6), and Chladni patterns, which are formed by the Newtonian forces

while inverse Chladni patterns are formed by the Stokesian forces (see

Fig. 5.2).

1.3 A guide through the thesis

In chapter 2, the numerical model to calculate the motion of all individual

particles in the granular material is presented, together with the model for

the calculation of the gas flow. In chapter 3, the numerical model is used

to simulate the motion of particles on a vibrating rigid plate, resulting in

- thanks to the ambient air - the Faraday heaps known from experiment.
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Figure 1.3: Granular matter can appear to behave like a normal gas, fluid, or solid.
However, it exhibits behavior not found in ordinary matter: In a granular gas,
clusters of particles are spontaneously formed due to inelastic collisions [9]. In a
granular liquid or solid, a load is not transmitted uniformly, but along a network
of force chains, due to friction between the particles [10].

These heaps merge into larger heaps on an ever increasing timescale and

this coarsening behavior is studied in chapter 4.

In chapter 5, the motion of particles on a vibrating flexible plate is

simulated, resulting in the famous Chladni patterns due to the Newtonian

forces and inverse Chladni pattern due to the Stokesian forces. Surpris-

ingly, the Newtonian forces can also form inverse Chladni patterns at very

mild shaking conditions. This is discussed in chapter 6.

In chapter 7, the discharge of a granular fluid through an orifice is

investigated. The outflow velocity is independent of the height of the

granular column, even when the walls of the column are horizontally

vibrated. Only when the wall induced shear rate is very high, the granular

fluid behaves like an ordinary fluid.

The general conclusion of this thesis and an outlook for future work

are provided in chapter 8.
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2
Numerical model

In this chapter, the hybrid granular dynamics (GD)-computational fluid

dynamics (CFD) code is presented that is used in the simulations described

in the next chapters. The GD code calculates the trajectories of the spherical

particles from Newton’s law, with the particle-particle interactions being

given by a 3D soft sphere collision model including tangential friction. The

CFD code calculates the gas phase by evaluating the full Navier-Stokes

equations by a finite difference method. The interaction between small

particles and gas is two-way and handled via (empirical) drag relations.

The interaction of large objects with the gas phase is implemented in two

ways, via the cell cut method and the immersed boundary method (IBM).

The immersed boundary method is validated with three different test cases,

showing that IBM is a versatile and flexible method to fully resolve the flow

around a large object.

2.1 Introduction

In this research, we focus on systems of particles where the "Newtonian"

(from collisions and gravity) and the "Stokesian" forces (drag, air pres-

sure) compete for dominance. For this reason, an accurate model for

the collision between the particles, the surrounding gas phase, and the

particle-gas interaction is required.

Two types of collision model are widely used, namely the hard sphere

model and the soft sphere model. The hard sphere model is event driven

and allows only for binary, instantaneous collisions. The resulting particle

velocities are obtained from an impulse balance, which can be solved

analytically. The soft sphere model is time driven and multiple particle

contacts are possible, where the particle velocities are calculated from

contact forces via numerical integration. The hard sphere model is often

7



8 2. NUMERICAL MODEL

Figure 2.1: Schematic representation of the unresolved flow method; the gas phase
is solved on a computational mesh with a length scale larger than the size of the
particles. The gas-particle interaction is calculated by an empirical model.

used in dilute granular flows, but is less efficient when a dense region of

particles impacts on a boundary. By contrast, the soft sphere model is less

efficient in dilute granular systems but is very suitable for dense granular

systems since multiple particle contacts are possible. Therefore, the soft

sphere model is used in this research.

There are several options for the description of the gas phase in the

presence of particles, but all of these can be traced back to two types,

namely fully resolved and unresolved gas flow. For fully resolved flow (e.g.,

Lattice Boltzmann Simulations [1] or the Immersed Boundary methods

[2]), the gas phase is solved on a length scale that is much smaller than

the size of the particles. Fully resolved flow computations, however, are

expensive from CPU and computer memory point of view and therefore

the size of the systems that can be studied is limited to typically a few

thousand particles on modern day computers. For unresolved flow, the

gas phase is solved on length scales larger than the particles (see Fig. 2.1)

and therefore the computational effort is much smaller. Since we are

interested in systems larger than ten thousand particles, we use the

unresolved gas flow. In that case, it is necessary to introduce empirical

drag relations in order to take the gas-particle interaction into account.

The dynamics of large bodies present in the system (such as the

moving boundary or intruder) is modelled fully resolved by either the IBM

or cell cut method, which is described in section 2.6.
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2.2 Equations of motion for the particles

The linear motion of a single spherical particle a with mass ma and

coordinate ra can be described by Newton‘s equations:

ma
d2ra

dt2
= Fgrav,a + Fdrag,a + F∇p,a + Fcontact,a , (2.1)

where Fgrav,a = mag is the gravitational force, Fdrag,i is the gas drag force,

and F∇p,a = −Va∇p is the force due to pressure gradients in the gas phase,

with Va the volume of particle a. Furthermore, Fcontact,a is the sum of the

individual contact forces exerted by all other particles in contact with the

particle a, which is divided into a normal and a tangential component:

Fcontact,a = ∑
b∈contactlist

(Fn,ab + Ft,ab) . (2.2)

The rotational velocity of a particle is given by:

Ia
dωωωa

dt
= Ta , (2.3)

where Ia = 2
5 maR2

a is the moment of inertia (with Ra the radius of particle

a), ωωωa the angular velocity, and Ta the torque, which depends only on the

tangential component of the individual contact forces:

Ta = ∑
b∈contactlist

(Ranab × Ft,ab) , (2.4)

where nab is the normal unit vector from particle a to b.

We will next give a description of the normal and tangential compo-

nent of the contact forces. The description of the force resulting from drag

with the gas phase is given in section 2.4, whereas the dynamics of the gas

phase itself is described in section 2.5.

2.3 Contact force

For the calculation of Fn,ab and Ft,ab, we use a 3D linear spring/dashpot

type of soft sphere collision model [3] along the lines of Cundall and Strack

[4]. From this model, it follows that the force in the normal direction

between two particles a and b which are in contact is equal to:

Fn,ab = −knδnnab − ηnvn,ab , (2.5)
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where kn is the normal spring stiffness, δn the normal overlap between

the particles, ηn the normal damping coefficient, and vab,n the velocity

difference in the normal direction. The force in the tangential direction

has a similar form

Ft,ab = −ktδttab − ηtvt,ab , (2.6)

where the variables have the same meaning as in Eq. (2.5), but now for the

tangential direction. Equation (2.6) is only valid when |Ft,ab| ≤ µpp |Fn,ab|,
where µpp is the Coulomb friction coefficient of particle-particle contact.

If the tangential force is larger, then frictional sliding occurs, resulting in

a force

Ft,ab = −µpp |Fn,ab| tab . (2.7)

2.3.1 Collision parameters

In order to solve Eqns. (2.5) and (2.6)/(2.7), we have to specify five pa-

rameters: the normal and tangential spring stiffness kn and kt, the friction

coefficient µpp, and the normal and tangential damping coefficients ηn

and ηt. However, instead of specifying the normal and tangential damping

coefficients, it is more convenient to specify the coefficients of normal

and tangential restitution en and et, which are defined as the relative

velocity of two colliding particles after the collision divided by the velocity

before the collision. These restitution coefficients determine the amount

of energy that is lost in a collision, independent of the mass and spring

stiffness of a particle. The values for the damping coefficients can be

calculated from the restitution coefficients, the spring stiffness and the

mass of the particles taking part in the collision [3].

In principle, kn and kt are related to the Young modulus and Poisson

ratio of the solid material; however, in practice their value must be chosen

much smaller, otherwise the time step of the integration needs to become

impractically small. Therefore, the spring stiffness is chosen as low as

possible while ensuring that using a different spring stiffness does not

have a significant influence on the phenomena observed. In practice,

the maximum overlap between the particles must be smaller than 5 %.

The values for kn and kt are thus mainly determined by computational

efficiency and not by the material properties. So, finally we are left with

three collision parameters en, et and µpp. The precise values for these

parameters can vary drastically and experimental data are scarce in the

literature. For this reason, the influence of varying the values of the

parameters is investigated for all the cases discussed in this thesis.
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2.4 Air drag force

An empirical relation has to be used for the gas drag force Fdrag,a on

a particle in the presence of neighboring particles. It is convenient to

write these relations in terms of the drag force on a single particle at low

Reynolds number (the Stokes drag), multiplied by a correction function F

to account for higher Reynolds number and the presence of neighboring

particles:

Fdrag,a = 6πµgRa (u− va) · F(Re, ε) , (2.8)

where µg is the dynamic gas viscosity and u is the local flow velocity of the

gas phase. A widely used relation for the function F are the Ergun [5] and

Wen&Yu [6] correlations:

F(Re, ε) =





ε−2.65
(
1 + 0.15 Re0.687

)
for ε > 0.8

150

18

1−ε

ε
+

1.75

18

Re

ε
for ε < 0.8

(2.9)

where Re = 2Raρgε |u− va| /µg is the particle Reynolds number, with ρg

the density of the gas phase and ε the local volume fraction of the gas

phase. The local flow velocity, volume fraction and density of the gas

phase are obtained by a linear (volume weighting) interpolation from the

nearest eight nodes of the computational mesh for the gas phase.

More recently, improved drag relations, obtained from fully resolved

simulations such as the Lattice Boltzmann Model have been proposed,

such as the correlation by Beetstra et al. [1]:

F(Re, ε) =
10 (1−ε)

ε
+ ε3

(
1 + 1.5 (1−ε)1/2

)

+
0.413 Re

24ε

[
ε−1 + 3ε(1−ε) + 8.4 Re−0.343

1 + 103(1−ε)Re−(1+4(1−ε))/2

]
. (2.10)

This correlation can also be extended to include for the effect of polydis-

persity. However, such systems are not considered in this thesis.

2.5 Governing equations for the gas phase

The gas flow is governed by the conservation equations for mass and

momentum:
∂

(
ερg

)

∂t
+∇ · ερgu = 0 , (2.11)
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∂
(
ερgu

)

∂t
+∇ · ερguu = −ε∇p− sp −∇ · ετττ + ερgg + sibm , (2.12)

where p is the gas phase pressure, τττ the viscous stress tensor, sibm the

source term for the momentum exchange with large bodies (discussed

in section 2.6.2), and sp a source term that describes the momentum

exchange with the solid particles:

sp =
Npart

∑
a=1

Fdrag,aδ (r− ra) , (2.13)

where the summation is over all particles and the drag force Fdrag,a is

identical to what is used in the equation of motion of the particles

(Eq. 2.1). The gas phase density ρg is calculated from the ideal gas law:

ρg =
pMg

RT
, (2.14)

with Mg the molecular mass of the gas, R the universal gas constant (8.314

J/(mol.K)) and T the temperature.

Note that no turbulence modelling is taken into account. For dense

granular beds, this can be justified since the turbulence is completely

suppressed in the particle bed due to the high volume fraction of the solid

phase.

2.5.1 Discretization of gas phase equations

A first-order-accurate semi-implicit method is used to discretize the mo-

mentum equations in time. The pressure and the particle force contribu-

tion are treated implicitly, while the viscosity and convection contribution

are treated explicitly. In Eq. (2.8) we observe that the particle drag contri-

bution can be split into a part proportional to u and a part proportional

to the particle velocity va. We therefore write sp as βu− α. With this, we

write Eq. (2.11) as:

∂
(
ερgu

)

∂t
= −[ε∇p + βu]− [∇ · ερguu +∇ · ετττ− α− ερgg− sibm] . (2.15)

We now discretize this equation in time∗:

[ερgu]n+1 = −∆t[ε∇p]n+1 − ∆tβnun+1 + An + ∆tsn
ibm , (2.16)

∗The porosity ε only depends on the particle positions. εn+1 is therefore available
explicitly by using the latest available particle positions. This data is stored to become
εn in the next time step. The latest available particle velocities va are used for αn
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with

An = [ερgu]n − ∆t[∇ · ερguu +∇ · ετττ − α− ερgg]n . (2.17)

The time step ∆t for the flow solver can be taken larger than the time step

required for the integration of the equations of motion of the particles. We

now collect un+1 at the LHS of the equation, yielding the final expression

for the velocity:

un+1 =
−∆t[ε∇p]n+1 + An + ∆tsn

ibm

[ερg]n+1 + ∆tβn
, (2.18)

The velocity and density can be substituted in the discretized continuity

equation:
[ερg]n+1 − [ερg]n

∆t
+ [∇ · ερgu]n+1 = D , (2.19)

where D is the mass deficit which should be zero. Naturally, ∇pn+1

and ρn+1
g (related to ∇pn+1 by Eq. (2.14)) in Eq. (2.18) are not explicitly

available. We therefore resort to an iterative procedure at each time level

which goes as follows (see also Fig. 2.2);

• Solve Eq. (2.18) using an initial estimated value p∗ for the pressure

at time level n + 1,

• Calculate the mass deficit D with Eq. (2.19),

• If the mass deficit D is not sufficiently close to zero, we use this value

to calculate a new estimation for the pressure p∗new and return to the

first item.

The new value for p∗new is p∗ + δp, where δp is obtained from a Taylor

expansion of the mass deficit D;

D(p∗new) = D(p∗ + δp) = D(p∗) +
dD

dp∗
δp + O(δp2) . (2.20)

Neglecting higher order terms and taking the desired mass deficit D(p∗new)
to be zero, this can be written as:

Jδp = −D(p∗) , with J =
dD

dp∗
(2.21)

Due to the spatial discretization of the Navier Stokes equations, p∗ and

D are vectors with length NX × NY × NZ and the Jacobian J is a square
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Time level n

p∗ = pn

Calculate s∗
ibm

with
Eq. (2.24) (IBM) or Eq. (2.29) (IBCM)

Calculate Eq. (2.18)
using p∗ and s∗

ibm

Calculate pressure
correction with

Eq. (2.21)

Calculate mass
deficit D with

Eq. (2.19)

Calculate IBM
correction with

Eq. (2.28)

Converged
for D?

Converged
for IBM?

Time level n + 1

Yes

Yes

No

No

Figure 2.2: Flow chart for the flow solver including the IBM iteration procedure.

sparse matrix. The solution for the vector δp is found by applying an

ICCG sparse matrix solver. In principle, the matrix J must be built at

each iteration. However, since it only changes a little, the matrix J is only

constructed at the first iteration step.

A staggered Cartesian 3D grid is used for the spatial discretization.

The scalar variables (p, ρg, and ε) are defined at the cell center, whereas

the velocity components are defined at the cell faces. The convective

terms in An are computed using a second order flux delimited Barton

scheme [8, 9], where the viscous and pressure terms are calculated by a

central difference representation.
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2.6 Interaction with large bodies

The interaction of the gas phase with an intruder larger than the size of

the CFD cells is modelled with the immersed boundary method (IBM).

The interaction of the gas phase with a vibrating boundary is modelled by

either the cell cut method or the immersed boundary method, which are

discussed in the next sections.

2.6.1 The cell cut method

The cell cut method was developed by Zeilstra [10]. In this method, the

vibrating boundary moves through a fixed computational grid for the gas

phase. This means that computational cells are ‘cut’ by the vibrating

boundary. The movement of the boundary changes the volume available

for the gas in the Cartesian cells, generating the wall-induced gas flow

in a natural way. When the vibration amplitude of a boundary is larger

than the size of the cells, computational cells can even find themselves

outside the computational domain. A detailed description of the method

is provided by Zeilstra [10]. To allow for simulations with a resonating

plate (see chapter 5), the method has been modified in order to be

able to model curved vibrating walls instead of rigid horizontal walls. A

disadvantage of the method is that computational cells can become very

small, which can lead to numerical instability of the flow solver.

An alternative, more flexible method to model the interaction with

large bodies is provided by the immersed boundary method, which is

described in the next section.

2.6.2 The immersed boundary method

The immersed boundary method (IBM) makes use of a fixed Eulerian grid

to solve for the flow field of the gas phase and Lagrangian marker points

situated on the boundary or large immersed body (see Fig. 2.3). Each

marker exerts a force on the gas phase such that the local velocity of the

gas is equal to the velocity of that marker. IBM has been widely used

to study fluid-structure interaction and was pioneered by Peskin [11] to

investigate cardiac flow problems. Subsequently, the method has been

extended to the flow around rigid bodies. The implementation that we

adopt is along the lines of Uhlmann [2]. The force term sibm, which gives

the desired velocity ud at time level n + 1, can be derived simply from
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Figure 2.3: Schematic representation of the IBM method; the gas phase is solved
on an Eulerian mesh with a length scale smaller than the size of an intruder.
Lagrangian markers (or force points) are located on the surface of the intruder.

rearranging Eq. (2.16):

∆tsn
ibm = ([ερg]

n+1 + ∆tβn)ud + ∆t[ε∇p]n+1 − An . (2.22)

We now introduce a preliminary velocity without applying a force term†:

up =
−∆tεn+1∇pn + An

εn+1ρn
g + ∆tβn

, (2.23)

If we take the values for the pressure and density at time level n instead of

n + 1 in Eq. (2.22), we can replace the last two terms in this equation by

the preliminary velocity times (εn+1ρn
g + ∆tβn) :

∆tsn
ibm = (εn+1ρn

g + ∆tβn)(ud − up) , (2.24)

i.e., the IBM force source term is proportional to the difference between

the desired velocity and the velocity of the fluid without any IBM forcing

term. We now evaluate this IBM force term at the Lagrangian force

points. The source term is calculated by summing the contribution of all

Lagrangian force points:

sn
ibm =

Nlangr

∑
a=1

Flangr,aδ (r− ra) . (2.25)

†We calculate this preliminary velocity in the flow solver using Eq. (2.18), where the
IBM force term is omitted and the pressure and density at time level n are used.
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The contribution of each Lagrangian force point to the IBM source term

is then simply:

Flangr,a = n(EP + ∆tB)(Ud −Up) , (2.26)

where E, P, B, Ud, and Up are the gas volume fraction, gas density, β, de-

sired gas velocity, and preliminary velocity at the Lagrangian force point

and n is a normalization factor. The values for E, P, B, and Up are obtained

by a linear (volume weighting) or a 4th order polynomial interpolation [12]

from the neighboring Eulerian gas phase cells. Ud is simply the velocity of

the Lagrangian force point. The force of each Lagrangian force point is

distributed to the nearest-neighboring Eulerian flow cell again by either a

linear (volume weighting) or a 4th order polynomial interpolation.

To each force point, a volume can be assigned signifying its range of

influence. The normalization factor n is then the volume per force point

divided by the total volume of a CFD cell. For a flat surface, and cubic

CFD elements, n is simply 1/Nfp, with Nfp the number of force points on

the surface per CFD cell. For a sphere, the range of influence of the force

points perpendicular to the surface is equal to the typical height h of a

CFD cell. The factor n for a sphere is then the surface area of the sphere

times the typical height h of a CFD cell, divided by the volume of a CFD

cell and the total number of force points on the sphere:

n =
4πR2h

h3Nlangr

, (2.27)

where h is 3
√

∆x∆y∆z. If the factor n is taken to be constant, it is important

that the force points are distributed uniformly over the surface. For a

flat surface, this is straightforward. However, for a sphere there is no

analytical expression to distribute the force points uniformly over the

surface, so we have to resort to approximate methods to distribute the

force points over the surface. Small deviations in the calculated flow

field can occur due to a slight heterogeneity in the distribution of the

force points, however, this has no significant influence on our results

(see Fig. 2.8). For arbitrary shaped surfaces, the factor n can usually

not be treated as a constant but becomes a function of the location.

The iteration procedure described below can be used to decrease the

difference between the desired and the actual velocity of the gas phase

when the factor n is not chosen entirely correctly.

Although the difference in the obtained flow velocity and the desired

velocity ud can be made smaller by decreasing the value of the time

step, it is sometimes convenient to correct the IBM force such that
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the difference becomes small while using a relative large time step.

The most straightforward implementation is that the IBM force can be

corrected using the difference between the obtained and desired velocity:

s∗ibm, new = s∗ibm + δsibm, with:

δsibm =
(εn+1ρ∗g + ∆tβn)(ud − u∗)

∆t
, (2.28)

where u∗ and ρ∗g indicate the flow velocity and density after a converged

pressure correction. The correction force is evaluated at the Lagrangian

force points as in Eqs. (2.25) and (2.26). The correction can be repeated

until δsibm is sufficiently small. The correction could be multiplied by a

factor smaller or larger than unity (i.e., under/over relaxation), but this is

not further investigated. The flowchart of the semi-implicit method for

the time discretization including the IBM iteration procedure is shown in

Fig. 2.2.

2.6.3 The immersed boundary correction method

IBM is a versatile and flexible method to fully resolve the flow around a

large object. However, it was found in a previous study [10] that very small

time steps are required to resolve the flow around a large sphere which is

pulled through a granular bed of small particles (see also section 2.6.6).

The time step can be increased by using the iteration procedure discussed

above. However, a relative large number of iterations must be employed

to obtain a satisfying solution. Inspired by the IBM iteration procedure,

we developed an immersed boundary method which does not calculate

an entirely new IBM force each time step (Eq. 2.24), but a correction to the

IBM force obtained in the previous time step:

∆tsn
ibm = ∆tsn

ibm, old + (εn+1ρn
g + ∆tβn)(ud − up∗) , (2.29)

where the preliminary velocity is calculated by:

up∗ =
−∆tεn+1∇pn + An + ∆tsn

ibm, old

εn+1ρn
g + ∆tβn

= up +
∆tsn

ibm, old

εn+1ρn
g + ∆tβn

, (2.30)

i.e., up∗ is equal to up except that the IBM force term obtained in the

previous time step is now included. The correction to the IBM force is

evaluated at the Lagrangian force points as in Eqs. (2.25) and (2.26). Note

that the IBM force term in the preliminary velocity appears to cancel with
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sn
ibm, old in Eq. (2.29), yielding the ordinary immersed boundary method.

However, there is a difference between these two terms: The force cor-

rection is calculated by summing the contribution of all Lagrangian force

points, which requires mapping from the Eulerian mesh to the Lagrangian

markers and vice versa. The first term on the RHS in Eq. (2.29) is just

the IBM forcing obtained in the previous time step and requires no

mapping. When the gradient of the flow field variables perpendicular

to the immersed boundary is large, for example due to the presence of

particles, the immersed boundary correction method gives more accurate

results than the immersed boundary method.

Since the immersed boundary correction method calculates a correc-

tion to the IBM force, the possibility arises that an IBM force is still present

in an Eulerian cell, even when no Lagrangian force point is within the

range of influence of this cell. For this reason, sn
ibm, old is multiplied by

a factor slightly smaller than unity before each time step. We use a factor

of m = σ|u
d|∆t/h, with σ a small number e.g. 1 · 10−6. This guarantees

that the IBM forcing only has one millionth of its original value when no

correction is applied and the force points have shifted the typical distance

of a CFD cell h. For the simulation of the air flow around a sphere (see

Fig. 2.7), σ = 1 · 10−6 which results in m = 0.983. Using a different value

for σ does not give different results.

In order to assure that the implementation of the interaction with

large bodies gives realistic results, it is necessary to first compare the

obtained results for the flow field with analytical or verified experimen-

tal/numerical results for some well-defined systems. Three test cases are

used for this validation:

• A vertically vibrating box - Containers with vertically vibrating rigid

walls are used extensively in the research presented in this thesis

(see chapters 3, 4, and 7). The velocity and the pressure gradient

can be calculated analytically.

• Flexible bottom plate - The airflow between a flexible vibrating

bottom plate and a rigid cover is a very interesting test case, since

the vertical motion of the bottom plate results in both a vertical and

horizontal airflow over the bottom plate. Furthermore, an analytical

solution for the flow field can be derived. A vibrating flexible bottom

plate is used in chapter 5.

• Flow around a sphere - The flow around a sphere is important if one
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Figure 2.4: Normalized maximum velocity in the box as a function of ∆t. The
cell cut method and the immersed boundary method with polynomial force
distribution show an error proportional to the time step ∆t, as expected from a
1st order in time discretization scheme. The error obtained by IBM with linear
distribution does not show a proportional decrease with ∆t. The IBM iteration
procedure can greatly reduce the error.

investigates e.g. the role of air in granular jet formation [13] or the

Brazil Nut effect [14] by numerical simulations. Experimentally ob-

tained relations for the drag force on the sphere are widely available.

In the next sections, these three test cases are discussed in more detail.

The immersed boundary correction method is only used for the flow

around a sphere.

2.6.4 Vibrating box

We use a vibrating container with dimensions 5 × 5 × 50 mm3 which is

divided in 5× 5× 20 CFD cells (W × D × H)‡. The container is vibrated

vertically using a sinusoidal driving with frequency f = 25 Hz and

amplitude a = 10 mm (corresponding to a dimensionless acceleration

Γ = aω2/g = 25, with ω = 2π f ). We use both the cell cut method and

‡Using only one CFD cell in each horizontal direction would be sufficient, since there
are no horizontal gradients. However, the minimum number of CFD cells in the numerical
code is five in each direction.
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the immersed boundary method to solve this test case. Note that for this

simple test case, it is also possible to move the CFD cells with the vibrating

box and simply add a source term of ερgaω2 sin(ωt) to the z-momentum

equation. However, this is not implemented in the code. At 1/4th and

3/4th of a vibration cycle, the acceleration is at a maximum while the

velocity of the box is zero. The velocity of the gas should therefore be zero

everywhere in the container at these time instants§. For this reason, we

compare the highest velocity of the gas phase in the box (normalized with

aω) at t = 3
4 / f s for a number of cases for different values of the time step

∆t (Fig. 2.4). When we use a linear (volume weighting) mapping between

the Eulerian grid and the Lagrangian force points, we do not observe a

first-order accurate in time behavior (circles in Fig. 2.4). This is most likely

due to oscillatory behavior induced when an IBM force point moves to a

next CFD cell. This is a well known phenomenon [11], and the conclusion

is that this mapping method produces unsatisfactorily results in this case.

By contrast, the 4th order polynomial mapping [12] provides a smoother

distribution of the forces when an IBM force point moves to a next CFD

cell. We see indeed that in the case where this mapping is applied, first-

order accurate in time behavior is obtained (i.e., the error is proportional

to the time step, see triangles in Fig. 2.4). The IBM iteration procedure can

greatly reduce the difference between the desired and obtained velocity,

see the asterisks and crosses in Fig. 2.4.

2.6.5 Flexible bottom plate

We use a container with dimensions 150× 150× 5 mm3 which is divided in

30× 30× 50 CFD cells (L× L× H). For the top of the container, a no-slip

boundary is used while periodic boundaries are used for all the vertical

walls. The vertical position z of the bottom plate at any point (x, y) is given

by:

z(x, y, t) = a sin(ωt) sin
2πx

L
sin

2πy

L
, (2.31)

with ω = 2π f = 2π 200 rad/s and a = 2.5 · 10−5 m (corresponding to

a dimensionless acceleration Γ = 4). The horizontal velocity of the gas,

averaged over the height H, can be evaluated analytically and is equal to

§This is only strictly true in the case of an incompressible fluid. However, the
acceleration and velocity of the box are small so compressibility effects have a negligible
influence on the velocity of the gas.
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Figure 2.5: Horizontal flow field at t = 1
2 / f s over a vertically vibrating flexible

bottom plate.

(see Fig. 2.5):

ūx = R aω cos(ωt) cos
2πx

L
sin

2πy

L
, (2.32)

ūy = R aω cos(ωt) sin
2πx

L
cos

2πy

L
, (2.33)

where the amplitude R has yet to be determined. This amplitude can be

derived with a continuum and symmetry consideration: All the air that

is displaced vertically by the resonating plate within the hatched area in

Fig. 2.5, must flow horizontally through the area indicated by the thick

black line:
∫ x

L/4

∫ L/2

L/4
aω cos(ωt) sin

2πx

L
sin

2πy

L
dxdy =

∫ L/2

L/4
h R aω cos(ωt) sin

2πy

L
dy , (2.34)

which results in R = L/(4πH). Figure 2.6(a) shows the analytical and

simulated velocity ūx at x = L/2 (dashed line in Fig. 2.5). For the cell
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Figure 2.6: (a) Analytical and simulated velocity ūx at x = L/2 (dashed line in
Fig. 2.5). (b) Simulated velocity ux at x = L/2 and y = L/4 (indicated by the
black X in Fig. 2.5). For both numerical methods, the no slip condition is used at
the top and bottom boundary, resulting in a thin boundary layer. With IBM, the
flow field is also calculated underneath the vibrating bottom plate, indicated by
the plus markers located at z < 0.
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cut method, the agreement with the analytical solution is excellent. For

the immersed boundary method, the agreement using a ∆t of 1 · 10−5 s

is very poor. Decreasing the time step to 1 · 10−7 s greatly improves the

agreement. However, a similar agreement can also be obtained by using

a ∆t of 1 · 10−6 s and 4 IBM iterations or a ∆t of 1 · 10−5 s and 25 IBM

iterations (not shown in Fig. 2.6). The simulated velocity ux as a function

of z at x = L/2 and y = L/4 (black X in Fig. 2.5) is shown in Fig. 2.6(b).

For both numerical methods, the no slip condition is used at the top and

bottom boundary, resulting in a thin boundary layer. With IBM, the flow

field is also calculated in a small region underneath the vibrating bottom

plate, indicated by the cross markers located at z < 0.

2.6.6 Flow around a sphere

The interaction between the interstitial air and granular systems with

many small particles can be modelled accurately using empirical drag

relations (see chapters 3 to 6). However, difficulties arise when the

granular system consists of many small particles and a large sphere (an

‘intruder’). Examples of such systems are granular jet formation, for

which it has been shown that the height of the jet and the penetration

depth of the intruder depend on the ambient air pressure [13], and the

Brazil Nut effect, where the rise velocity of the intruder depends on the

air pressure [14]. The difficulty in modelling such systems is that the size

of the intruder is typically much larger than the size of the CFD cells (at

least when the flow around the intruder has to be calculated accurately).

For this reason, we use empirical drag relations for the interaction with

the small particles, while the interaction of the gas with the large intruder

is handled by the immersed boundary method.

For the test case, we use a container with dimensions 6× 6× 12 cm3

(W×D×H). At the bottom of the container, the vertical air velocity is 0.19

m/s. A spherical intruder with a diameter di of 10 mm is pulled through

the container with a constant velocity¶ of -0.05 m/s. The Reynolds

number of the gas phase, calculated in a frame of reference where the

intruder is static, is equal to Re = 160. In some test cases, the container is

also filled with 1.4 million spherical particles (ρ = 2500 kg/m3) of average

diameter 0.5 mm, with a Gaussian size distribution (σ = 0.02 mm) to avoid

excessive ordering of the bed. The minimum fluidization velocity of these

¶A non-zero velocity for the intruder is used to investigate the effect of CFD cell
transitions of the intruder.
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Figure 2.7: Cross section of the gas velocities around a sphere that is pulled with a
velocity of -0.05 m/s through a vertical gas flow of 0.19 m/s (resulting in a Reynolds
number of Re=160 without particles). Both results are obtained with IBCM with
∆t = 5 · 10−5 and only part of the container is shown. On the left hand side,
no small particles are present, while on the right side, the container contains 1.4
million small particles. The black dots on the large sphere indicate the Lagrangian
force points. Without particles, a large wake behind the sphere can be identified,
which is typical for a flow around a sphere at this Re number. In the presence of
particles, there is a wake present immediately behind the intruder. However, it is
only a small wake because the particle density is lower behind the intruder and the
gas flows more easily here. This results in large gas velocities behind the intruder
and a reduced size of the wake.

particles is around 0.16 m/s (calculated with Eq. (2.9) using a solid fraction

ε of 0.5), so the bed is in a fluidized state. The restitution coefficient has a

relative high value of 0.99 and the friction coefficient a low value of 0.05 to

ensure low energy dissipation and thereby a homogenous granular bed.

The simulations are started with the intruder at half the height of the

container. After 0.5 seconds, the intruder is at 3/10th of the height of the

container and the wake behind the intruder is fully developed. Figure 2.7

shows a cross section of the flow around a intruder at this time instant

without and with small particles. The size of the CFD elements is 2× 2× 2

mm3 (i.e., the height h of a CFD cell is di/5 mm).

Figure 2.8 shows the absolute value of the difference between the

velocity of a IBM force point and the local vertical air velocity at that

point (averaged over all the force points), normalized by the velocity
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of the intruder relative to the gas flow, as a function of the time step.

With IBM, the velocity difference is greater than 100% for ∆t ≥ 5 · 10−5

s when particles are present, i.e. the no-slip condition on the surface

of the intruder is not nearly satisfied. This leads to an unrealistic flow

field in which the gas is flowing towards the intruder instead of around

it, which was also found in [10]. Using 10 iterations decreases the error

significantly, resulting in a more realistic flow field. However, a much

smaller velocity difference (≈ 4% with ∆t = 5 · 10−5 s) is found using

IBCM, i.e. the no-slip condition on the surface of the sphere is satisfied.

Without particles, the error is smaller than 1% for both IBM and IBCM.

In order to investigate the mesh size dependency, we compare the

numerically obtained drag force on the intruder Fdrag (without small

particles) for different mesh sizes (see Fig. 2.9), with the experimentally

obtained drag force relation found by Schiller & Naumann [15]:

Fexp = cd

(
1

4
πd2

i

) (
1

2
ρgU2

c

)
with cd =

24

Re
(1 + 0.15Re0.687) . (2.35)

For the simulations, we use IBM with a time step of 5 · 10−4 s. Using

a smaller time step or IBCM does not influence the results. The simu-

lation with the linear mapping shows periodic oscillatory behavior with

a frequency equal to the frequency of cell changes of the intruder. If
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the time step is decreased, the oscillations increase in strength and the

difference between the experimental and simulated drag force increases,

demonstrating again that this mapping method is not very suitable for

moving objects. For h = di/5 mm, the boundary layer around the

sphere is too large (see Fig. 2.7), resulting in an overestimation of the

drag force on the intruder. Decreasing the mesh size leads to a better

correspondence to the experimental result. However, even with a grid

size of di/20 mm, the numerically obtained drag force is 11% larger than

the drag force obtained by the empirical drag relation. There is an error

margin in empirical drag relations‖, however Magnaudet et al. [17] found

in numerical simulations a drag force equal to the empirical drag force at

Re=100 and and a slightly lower drag force at Re=200. In their simulations,

an axisymmetric body-conforming mesh is used, which enables them

to use a much smaller mesh size perpendicular to the intruder surface

(≈ di/50 mm) and a much larger container size (80di). Using such a large

container and small mesh size would require 64 billion CFD cells in our

fully 3D model with Cartesian mesh, which is unfeasible on modern day

computers. In order to compensate for this overestimation of the drag,

one can define the diameter of the intruder slightly smaller than the actual

diameter in the flow field calculation.

2.6.7 Discussion

There is a large similarity to the way in which the immersed boundary

(correction) method and the interaction of small particles with the gas

phase, are handled in our numerical model: In both cases, the force on

a Lagrangian point is proportional to the difference in velocity between

the Lagrangian point and the local (preliminary) gas velocity of the gas

phase. Subsequently, this force is mapped to the Eulerian mesh. However,

the preliminary velocity used in the immersed boundary method is not

equal to the local gas velocity. Furthermore, IBM iterations are sometimes

required to obtain a satisfying solution. For this reason, it is not practical

to integrate the treatment of small particles and IBM. In case of the im-

mersed boundary correction method however, the preliminary velocity is

virtually equal to the local flow velocity, so the only significant difference

between the treatment of small particles and IBCM is the difference in

the "drag" relation. This opens the possibility to integrate the treatment

‖For example, the White empirical drag relation [16] (cd = 24
Re

(1 + 0.25Re
0.5

1+Re
−0.5 + 0.4

24 Re)),

yields a drag force 11% higher than than the Schiller & Naumann drag relation at Re=160.
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Figure 2.9: Drag force on the intruder normalized by the empirical drag relation
from Schiller & Naumann [15]. In all simulations except one, ∆t = 5 · 10−4 s.

of small particles and IBCM in the numerical model.

Two methods were tested to further improve the immersed boundary

method. First, an extra layer of Lagrangian markers was used at a distance

h below the immersed boundary. Second, small particles were placed

inside the intruder. Both methods slightly improve the results, but not

as much to justify the effort.
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3
Faraday heaping: The interplay of air

and sand§

In this chapter, numerical simulations are presented of a vibrated granular

bed including the effect of the ambient air, generating the famous Faraday

heaps known from experiment. A detailed analysis of the forces shows that

the heaps are formed and stabilized by the airflow through the bed while

the gap between bed and vibrating bottom is growing. Importantly, the

simulations also explain the heaping instability of the initially flat surface.

3.1 Introduction

Faraday heaping is one of the most celebrated and beautiful examples

of the effect of air on granular matter. When a box with fine dry sand is

vertically vibrated or tapped, its initially flat surface turns into a landscape

of small heaps, which in the course of time tend to coarsen into larger

heaps [1–5]. At very low pressure, when the air drag on the particles can

be ignored, no heaping of any kind is observed, implying that the ambient

air plays a crucial part in the heaping instability, as was already noted

by Faraday [6]. The subject has received considerable attention since

its discovery by Chladni and Faraday, especially in recent years with the

increased interest in granular matter. These studies - all experimental -

have led to several explanations as to why the heaps keep a stable shape,

including internal avalanches [1], horizontal pressure gradients [3], and

the stability of inclined surfaces [7]. In this chapter we present numerical

simulations of the Faraday heaping effect, including the coarsening pro-

cess of the small heaps into larger heaps. Although numerical simulations

§Published as: H.J. van Gerner, M.A. van der Hoef, D. van der Meer, and K. van der
Weele, Interplay of air and sand: Faraday heaping unravelled, Phys. Rev. E 76, 051305
(2007).
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Figure 3.1: Numerically simulated Faraday heaping in a vibrated granular bed
after 0, 30, 55 and 240 driving cycles. After a few cycles, some slight surface ripples
start to grow into small heaps, which coarsen into larger heaps until a steady state
with a single Faraday heap is reached.

of tilting in a water-immersed granular bed have been reported earlier [8],

this is the first time, to our knowledge, that a genuine Faraday heap is

simulated. The simulations allow us to obtain a detailed insight into

the physical mechanism at work, elucidating the role of the ambient air,

and discriminating between the previously proposed explanations of the

heaping effect.

3.2 Numerical model

For the simulation we use the hybrid Granular Dynamics (GD) Com-

putational Fluid Dynamics (CFD) code described in chapter 2. The

GD code calculates the particle trajectories from Newton’s law, with the

particle-particle interactions being given by a 3D soft sphere collision

model including tangential friction. The CFD code evaluates the full

Navier-Stokes equations by a finite difference method. For the two-way

coupling between the particles and the gas phase, the drag force relations

described by Eq. 2.10 are used∗. The simulated system, Fig. 3.1, contains

13,500 spherical particles (ρ = 2500 kg/m3) of average diameter 0.5 mm,

with a Gaussian size distribution (σ = 0.055 mm) to avoid excessive

∗Our simulations show that the precise form of the drag force is not very critical:
Simulation carried out with the Ergun drag force relation (Eq. 2.9) led to similar results.
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ordering of the bed. In all simulations the coefficient of restitution is set

to 0.90 for the normal direction, and to 0.33 for the tangential direction.

For the particle-wall interaction the same collision parameters are used

as for the particle-particle interaction. The friction coefficient is set to

0.2. All these parameters are typical for glass spheres in a glass box.

The dimensions of the box are 100×50×2.1 mm3 (W × H × D), i.e., four

particles fit in the depth direction and the mean height of the granular

bed in rest is about fourteen particle diameters. The box is closed

airtight (which is modelled using the cell-cut method, see section 2.6.1),

containing air at atmospheric pressure without gas leaving or entering the

system. For the numerical simulations, the box is divided in 80×60×1

(W × H × D) CFD cells. It was found that using more CFD cells did not

produce different results.

3.3 Steady state heap

Starting with a flat bed, and vertically vibrating it using a sinusoidal

driving with frequency f = 6.25 Hz and amplitude a = 10 mm (cor-

responding to a dimensionless acceleration Γ = a(2π f )2/g = 1.6), we

typically observe the following series of events (Fig. 3.1): Already after a

few cycles, some random surface fluctuations are seen to grow into small

heaps. After this, on a much longer time scale, the small heaps merge

together into larger heaps until finally a steady state with a single heap

is reached. Under vacuum conditions (i.e., if we turn off the gas-particle

interaction in the simulations) no heap is formed, in accordance with the

experimental findings [2, 6]. Also, if we remove the air once a heap is

formed, it disappears within 15 cycles.

We first focus on the steady state with one heap and address the

question how the heap keeps its stable shape. A good starting point

is given by Fig. 3.2, which shows the dynamical equilibrium that is

present within the heap. The particles are seen to be in constant motion,

following a circulation pattern that consists of two convection rolls, in

which the outward avalanche in the upper surface layers is balanced by

a collective inward motion of the particles in the interior of the heap.

This pattern confirms the circulation proposed by Faraday [6] and found

experimentally by Behringer et al. [4]; half of the pattern (one convection

roll) was found numerically for water-immersed beds by Milburn et al. [8].

How is the circulation sustained? To reveal and understand the

mechanism, we follow the heap during a complete vibration cycle, see
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Figure 3.2: Circulation in the Faraday heap: The arrows indicate the particle
displacement (multiplied by two for clarity) during one driving cycle, averaged
over 25 cycles. The part of the heap shown here corresponds to the black box in
Fig. 3.1.

the snapshots at phase angles 90 ◦, 171 ◦, 234 ◦ and 360 ◦ in Fig. 3.3. The

vertical bands of grey marker particles illustrate again the circulation of

Fig. 3.2, the black arrows indicate the drag force of the air on the particles.

Initially, the bottom plate and bed are moving upwards together. The first

snapshot in Fig. 3.3 is taken at 90 ◦, when the bed has already detached

from the bottom and a gap has started to grow between bottom and bed,

causing a region of low pressure underneath the heap. The isobars are

indicated with black lines in this figure. The pressure above the heap is

approximately constant, because the air resistance in the heap is much

higher than above the heap. For this reason, the isobars run parallel to the

surface of the heap, resulting in a airflow perpendicular to this surface.

Furthermore, the pressure is lowest underneath the center of the heap

because the air enters more easily through the sides than through the

center. This generates a downward airflow through the heap (strong at

the sides where the heap is thin, weaker in the center), with a noticeable

inward component. The air drag thus accelerates the particles down and

inwards.

At 171 ◦, the heap is in free flight. The contact forces between the

particles as well as the air drag are very small at this stage, so the particles

within the heap maintain their inward motion and hence the number

of particles near the center increases. It can be seen that the bed itself

becomes slightly curved, because the downward drag at 90 ◦ was larger at

the sides. At 234 ◦, the bed is coming down again, and the sides have in fact

already reached the bottom. The particles now experience a large up- and

outward drag force due to the increased air pressure between the box and

the descending granular bed. However, the collision with the bottom will

rapidly compactify the heap, so that the particles get locked and cannot

move anymore. Finally, at 360 ◦ the heap is in rest except for a thin layer
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Figure 3.3: The stable Faraday heap (cf Fig. 3.2) at four successive phases during
one driving cycle. The arrows indicate the air drag force on the particles averaged
per CFD cell (one out of every 4 arrows is shown); at 234 ◦, when the drag force is
very strong, the arrows are scaled by a factor of 1/3 compared to those at the other
phase angles. For comparison, the gravitational force on a particle is shown in
the 90 ◦ figure (and also at 234 ◦); the ratio of gravity and air drag forces, which
is comparable to the Bagnold number [13], is of order one in this simulation.
The dynamics of the rectangular ensemble of dark particles is further analyzed
in Fig. 3.4. A video of one driving cycle can be found on the enclosed CD-ROM.
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of particles that avalanches down its slopes. Since we are in a steady

state, this precisely neutralizes the surplus of particles at the heap’s center

built up during the previous stages, and thereby completes the circulation

pattern of Fig. 3.2.

The above findings are similar to the experimental observations of

Thomas and Squires [3], who found - from floor pressure measurements

at multiple locations - a horizontal component of the pressure gradient

which drives the particles inward during the first part of the cycle, when

the particles are free to move. However, the horizontal component of the

pressure gradient not only arises from air entering the heap more easily

through the sides (resulting in a horizontal pressure gradient at the floor)

but also from the isobars running parallel to the surface†, which induces

a horizontal component of the pressure gradient in the bed. We further

investigated the significance of this second mechanism by carrying out

a simulation in which the top of the box is closed and the bottom is

permeable for air (i.e., a constant pressure at the bottom is prescribed):

Also in this case heaps are formed, solely due to the fact that the isobars

are parallel to the surface, without any pressure gradient at the bottom.

The inward pressure gradient due to the isobars running parallel to the

surface plays an especially important role at onset of heaping, when the

horizontal pressure gradient on the floor is relative small and the main

contribution to the horizontal component of the pressure gradient stems

from the curved isobars along the surface.

For a quantitative description of the heaping mechanism we show in

Fig. 3.4(a) the horizontal components of the contact and drag forces per

unit mass on the rectangular ensemble in Fig. 3.3, during one driving

cycle. In Fig. 3.4(b) we integrate these forces twice, which yields the

virtual displacement of the ensemble due to the contact and drag forces

individually. The sum of these two virtual displacements is the actual

horizontal displacement of the ensemble, given by the solid black curve

in Fig. 3.4(b).

During the very first stages, the particles are seen to move slightly

outward due to the contact forces, which are initially quite large, but

rapidly decrease as the bed loosens up. At 40 ◦ they become practically

zero. At this point the gap between the bed and the bottom starts to grow,

†Thomas and Squires use a linear interpolation between floor pressures and the
constant surface pressure to obtain a pressure within the bed. This interpolation results
in isobars that follow the surface - this is however not mentioned in their article [3], and
also not the important consequence of the resulting inward pressure gradient near the
surface.
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Figure 3.4: (a) The averaged horizontal components of the contact and drag forces
(per unit mass) on the rectangular ensemble of dark particles in Fig. 3.3, as a
function of time during a complete driving cycle. Positive forces point towards
the center of heap. (b) The virtual displacements due to the contact and drag
forces individually, and their sum, i.e., the actual horizontal displacement of the
ensemble. The net displacement during one cycle (0.43 mm towards the center of
the heap) is already reached at 260 ◦. After that, the heap is fully compactified and
the particles in the ensemble are locked until a new cycle starts.
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inducing the inward air drag discussed above, which reaches a maximum

value around 90 ◦. This drag force succeeds in turning the motion of the

ensemble around at 75 ◦, and the particles start to move inward. This

motion is maintained up to 220 ◦. At 200 ◦ the gap between bottom and

bed is largest and the ensemble hardly experiences any forces. After

200 ◦ the gap becomes smaller again and the air drag is now directed in

the opposite direction, reversing the motion of the ensemble at 220 ◦.
Shortly afterwards (≈ 240 ◦), the heap collides with the bottom - sides

first - and this sends a shock wave through the bed with a large horizontal

inward component. As a result, the motion is turned around again

towards the center of the heap (exemplified by the small hump in the

total displacement curve, Fig. 3.4(b)) and the bed compactifies, causing

the wild turmoil of contact forces in Fig. 3.4(a) at 240 ◦-260 ◦ and fixating

the particles. Figure 3.4(b) shows that around 260 ◦ the ensemble comes

to a standstill, its final horizontal displacement after one cycle being 0.43

mm inward, slightly less than a particle diameter.

3.4 Evolution of an initially flat bed

So far we focused on the steady state of a single Faraday heap, but

how does this steady state come into existence? Figure 3.5(a) shows the

evolution of an initially flat bed (which was created by giving all particles

a random velocity with a standard deviation of 0.1 m/s) as a function of

the number of cycles. The width of the box W is here increased from 0.1 to

0.3 m (to accommodate a reasonable number of heaps) and 40,500 instead

of 13,500 particles are used, thus keeping the mean depth of the granular

bed constant. We observe a two-stage coarsening process [14, 15]: (a)
A fast initial stage where seven small heaps are formed within 50 cycles,

followed by (b) a slow second stage where the heaps merge and combine

into two larger heaps; it is anticipated that these heaps will eventually

merge into one single heap, as in Fig. 3.1, however, since the merging

slows down considerably with a decreasing number of heaps, the required

computing time is beyond our computer resources. Interestingly, during

the whole coarsening process the slopes of the heaps have a nearly

constant angle of 18.5 ◦, which is lower than the static angle of repose

(22.7 ◦, determined by an independent simulation).

With respect to stage (a), detailed simulations show that as soon as a

slight ripple appears on the surface, the isobars follow the surface and

the local air drag directly acquires a noticeable horizontal component,
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Figure 3.5: Evolution of the heap pattern in a box three times as wide as that in
Fig. 3.1. A video of this evolution can be found on the enclosed CD-ROM.

dragging particles towards the center via the mechanism of Fig. 3.3.

Initially, the slope of the ripple is so small that there is hardly any

avalanching. Thus it steadily grows, increasing its slope and thereby

the number of particles that avalanche down, until at some specific

angle (here 18.5 ◦) an equilibrium is reached between the fluxes due to

avalanching and inward drag force. This is illustrated in Fig. 3.6(a), which

shows the averaged horizontal displacement per cycle of inward and

outward moving particles separately, as a function of the angle of the

slope. The measurements for heap angles up to 18.5 ◦ are obtained during

the first 50 cycles and averaged over the five center heaps in Fig. 3.5. The

measurements for heap angles between 18.5 ◦ and 22 ◦ are obtained by

pouring particles on the seven heaps after 50 cycles, until the static angle

of repose is reached, and than restart the vibration of the system. The

error bars denote the standard deviation of the data.

After stage (a), seven heaps are present in the box with a width W
of 0.3 m, independent of the vibration parameters: Simulations carried

out at different frequencies and amplitudes always result in this wave

number. An almost constant wave number was also found experimentally

in [16], although the wavelength found there is around 6 mm, while the

wavelength in our simulations is around 43 mm. A Fourier transform of

Fig. 3.5 shows that the wave number is already strongly present in the

initial condition (Fig. 3.7a), although the difference in height between the

peaks and valleys is less than one particle diameter. The question arises if

the wave number of 7 is inherent to the heaping instability, or just a result
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(a)

(b)

Figure 3.6: (a) Averaged horizontal particle displacement in a heap, due to the
inward air drag (black) and outward avalanching (gray), as a function of the
growing slope angle, during the first stage when the heaps are formed. The
displacements balance each other at a slope of 18.5 ◦. (b) Particle displacement
during one cycle in the heap indicated by the frame in Fig. 3.5, which is about to
merge with the neighboring heap to the right. The displacements are averaged
over five cycles around 240 cycles and multiplied by two for clarity.

of the initial condition of the granular bed. To answer this question, the

initial granular bed is first vibrated for 5 seconds at a frequency of 200 Hz

and an amplitude of 1 · 10−5m, resulting in a granular bed with a nearly

flat surface. The difference in height between the peaks and valleys is less

than one particle diameter and a Fourier transform of the surface shows

small humps at many wave numbers. Subsequently, a heaping simulation

with this bed as initial condition is carried out, resulting after 45 cycles in

a collection of heaps with different sizes and no specific wave number

(Fig. 3.7(b)), although wave numbers above 15 are not present anymore; a

detailed analysis shows that the heaplets with larger wave numbers merge

into heaps with small wave numbers before they reach their steady state

angle. It may be concluded that the wave number during stage (a) is very

sensitive to the initial condition and that the wave number of 7 is not

related to the vibration parameters or particle and box dimensions.
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Figure 3.7: (a) Fourier transform of the first 45 cycles of Fig. 3.5 as a function
of the wave number k (made dimensionless by the width of the box W). The
color indicates the relative value of the Fourier transform per cycle, the height
is the absolute value. The initial number of 7 heaps is already present in the
initial condition and grows stronger as the heaps grow during the first 30 cycles.
(b) Fourier transform of the first 45 cycles of a simulation with different initial
conditions, resulting in a landscape of heaps without any specific wavelength.

To explain the physics of stage (b), i.e., why the heaps merge, we pro-

ceed analogously as for the single Faraday heap and consider the averaged

displacement of particles during one cycle in the region indicated with

black lines in Fig. 3.5 after 240 cycles (Fig. 3.6(b)). The arrows show that

the inward motion inside the left part of the selected heap is much larger

than in the right part. This asymmetry in the displacement field is caused

by the fact that the slope of the left side of the heap is longer than the

right slope, so the inward drag force is stronger here. This will result in a

displacement of the entire heap towards the right, and the merging with

the neighboring heap. Thus the coarsening of heaps takes place primarily

because heaps move towards each other and not because the height of

one heap steadily increases while the height of another heap decreases,

as suggested in [17]. The coarsening process is discussed in more detail in

chapter 4.



42 3. FARADAY HEAPING

10
−1

10
0

10
10

4

8

12

16

20

24

drag factor

he
ap

 a
ng

le
 (

de
g)

(a)

0 0.2 0.4 0.6 0.8 1
0

4

8

12

16

20

24

friction coefficient,  restitution coefficient

he
ap

 a
ng

le
 (

de
g)

restitution coefficient
friction coefficient

(b)

Figure 3.8: (a) Heap angle as a function of the air drag factor. (b) Heap angle as
a function of restitution and friction coefficient. The measurements are obtained
from simulations in which one parameter is changed slightly after each vibration
cycle. The initial condition for each simulation, corresponding to the steady state
heap of Fig. 3.1, is indicated with a marker.

3.5 Influence of different parameters

3.5.1 Air drag, friction, and restitution coefficient

The outcome of a heaping simulation depends on a number of param-

eters. In order to obtain insight in the influence of these parameters,

simulations are carried out where one parameter is slightly changed after

each vibration cycle. The rate of change of a parameter was chosen

such that decreasing the rate of change any further did not produce

significantly different results. The initial condition for each simulation

is the steady state heap shown in Fig. 3.1 and is indicated by the markers

in Fig. 3.8.

One of the most important parameters which influences the heaping

is the ratio of the air drag and the gravity force, comparable to the (recip-

rocal) Bagnold number that plays an important role in the description of

aerial transport of sand in deserts [13]. If it is reduced to zero, no heaping

of any kind is observed.

The drag force acting on the granular bed can be represented as the

drag force on a single isolated particle in the limit of zero Reynolds num-

ber (the Stokes-Einstein relation) multiplied by a dimensionless empirical

function f that depends on the packing fraction φ and Reynolds number

Re, e.g, the Ergun relation [18] or the drag force relation described in [12]:

Fdrag = 3πµdU f (φ, Re), where µ is the viscosity of the medium, d the

diameter of the particles, and U the velocity of the air relative to the bed.

The gravitational force on each particle (of mass m) is simply Fg =
mg = ρπgd3/6, with ρ the density of the particles and g the gravitational
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acceleration. Hence the dimensionless number that gives the ratio of the

(typical) drag force and gravity takes the form:

B =
Fdrag

Fg
=

18µU

ρgd2
f (φ, Re). (3.1)

In this equation, the particle size and density (d and ρ), gravity (g), and

viscosity (µ) are the control parameters, whereas φ, Re, and U are response

parameters of the system, which vary through the system and change if we

vary any one of the control parameters. This means that it is not feasible

to systematically vary the dimensionless number Eq. (3.1) via one of the

physical control parameters. Moreover, a modification of the control

parameters may not only change the ratio B, but also other quantities

that influence the heaping. Therefore, we choose to modify the level of

the air drag Fdrag artificially by introducing an air drag factor, i.e., a factor

by which we multiply the air drag obtained from the drag relation. The

result is shown in Fig. 3.8(a): If the air drag factor is decreased from its

default value 1 towards zero, the heap angle becomes smaller and smaller,

just as expected. Likewise, if we increase the air drag factor, the heap

angle grows and reaches a maximum at a drag factor of 20. Increasing

the drag factor still further results in a decrease of the heap angle; detailed

simulations show that for a drag factor of 40 the air drag acting on the

particles becomes so strong that the bed does not detach from the plate

anymore and hence the particles can hardly move inward.

For comparison we also performed a limited set of simulations in

which we varied a physical control parameter (particle size and density,

gravity, viscosity). We found that changing either the viscosity µ or the

particle density ρ gave similar results as a corresponding change of the air

drag factor‡. However, decreasing the particle diameter d by a factor of 7

turned out to give a quite different result than simply multiplying the drag

factor by 49; in particular, in the former case the granular bed is much

more diluted (i.e., φ becomes smaller) during the free flight phase. Finally,

changing the gravitational acceleration g leads to different results (than

the corresponding reciprocal change in the air drag factor) because it

does not only influences the dimensionless ratio B, but the dimensionless

‡Even if the viscosity of the fluid is reduced to zero, a small drag force acts on the
particles, because part of the drag force does not depend on the viscosity, but on the
pressure drop over a particle (the so-called form drag, which is included in the emperical
models). However, for these systems, the form drag is much smaller than the viscous drag
and changing µ leads to simular results as changing the air drag factor.
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acceleration Γ as well§. Therefore, it can be concluded that the influence

of the particle density ρ and the viscosity µ on the heap formation is

controlled exclusively by the ratio B, which is not true for the diameter

d or gravitational acceleration g.

Changing the friction coefficient has a pronounced influence on the

heap angle. Because the angle of repose of a pile of particles is 0 ◦ without

any friction, the heap must disappear when the friction coefficient is

reduced to zero. On the other hand, increasing the friction above 0.4 also

results in a decrease of the heap angle. This can also be explained since

the inward motion of the particles due to the air drag is hindered by the

increased particle-wall and particle-particle friction.

Interestingly, the restitution coefficient only has a small influence

on the heap angle at these vibration parameters. Even at a restitution

coefficient of 1 (the elastic case), the energy dissipation due to friction is

sufficient to prevent the heap from collapsing during impact. However,

simulations show that the restitution coefficient can have a marked

influence at more vigorous shaking conditions: When the box is vibrated

with a dimensionless acceleration Γ of 2.4 (at a frequency f = 12.5 Hz),

the heap collapses with a restitution coefficient of 0.9 but remains stable

with a restitution coefficient of 0.5.

3.5.2 Vibration amplitude and acceleration

The vibration amplitude a and dimensionless acceleration Γ are impor-

tant parameters for Faraday heaping. The influence of these parameters

is systematically studied in simulations at five different frequencies (4.17,

5, 6.25, 9, and 17 Hz). In each simulation, the dimensionless acceleration

Γ starts with 1.2 and is increased (via the amplitude a) with 0.005 after

each vibration cycle. This value was chosen such that decreasing this

value any further did not produce significantly different results. The

initial condition for the simulations is the steady state heap in Fig. 3.1.

The heap angle as a function of vibration amplitude a and dimensionless

acceleration Γ that results from these simulations, is indicated by colors

in the straight lines in Fig. 3.9(a). The heap angle slowly decreases with in-

creasing acceleration until a dimensionless acceleration of approximately

1.9, above which the heap collapses and the heap angle reduces to 0 ◦.

§The dimensionless acceleration Γ is important because, in a vacuum, it is the only
parameter that determines the phase angle at which the granular mass detaches from
and collides with the bottom of the box during a vibration cycle.
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Figure 3.9: (a) Straight lines: Heap angle as a function of vibration amplitude
a and dimensionless acceleration Γ. The color bar indicates the heap angle
in degrees. The measurements are obtained from simulations at five different
frequencies as indicated. Contour lines: Impact velocity obtained from the model.
The increment between the contour lines is 0.1 m/s. (b) Straight lines: Inward
particle motion obtained from the same simulations. The color bar indicates
the inward displacement per particle per vibration cycle in mm. The inward
displacement increases in the direction of the arrow. Contour lines: Inward
motion of the particles obtained from the model. The maximum value of the
inward motion in the model is scaled to match the maximum value in the
simulation.
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Simulations show that the inward motion during one vibration cycle

(and therefore the velocity of the Faraday circulation) depends on both

vibration acceleration and amplitude. The straight lines in Fig. 3.9(b)

show that the inward motion during one vibration cycle, is small for

low vibration amplitudes, that is, at equal values of Γ the magnitude of

the inward motion grows for increasing a¶. This is reflected in the time

required to evolve from an initially flat surface to 7 small heaps: Around

20 seconds in a simulation with a vibration amplitude a = 2.5 mm (and

frequency f = 12.5 Hz) and just 3 seconds in a simulation with a = 22 mm

(and f = 4.17 Hz); Γ is 1.6 in both simulations.

The simulations show that the heap disappears with increasing accel-

eration, despite the fact that the inward motion increases. In order to gain

more insight in the influence of the vibration amplitude and acceleration,

a simple one-dimensional model was created which consists of a com-

pletely inelastic object (representing the total granular mass) bouncing

on a vibrating plate. It is assumed that the velocity of the air is equal

to the velocity of the vibrating plate. The vertical component of the air

drag on the object is calculated with the Ergun drag force relation [18]

on a single particle, where it is assumed that the porosity of the granular

mass has a constant value of 0.5. Because the pressure contours are

parallel to the heap surface (and the air drag force is perpendicular to the

pressure contours), the horizontal drag force on the particles is calculated

by multiplying the vertical drag force with the sine of a steady heap angle

of 18.5 ◦. Integrating the horizontal drag force twice (until impact of

the object with the plate) results in the inward motion of the particles

during one vibration cycle, as indicated by the contour lines in Fig. 3.9(b).

The results from the model correspond well with the results from the

simulations: The inward motion (and therefore the Faraday circulation)

increases with increasing amplitude and acceleration.

The model also calculates the impact velocity of the object on the

vibrating plate. This impact velocity is indicated by contour lines in

Fig. 3.9(a). In order to determine the relation between the impact velocity

and the outward displacement of the particles due to avalanching, we

carried out simulations in which a heap was thrown with different veloc-

ities onto a horizontal plate. The simulations showed that avalanching

strongly increases with increasing impact velocity; the precise relation

however depends on various parameters as heap size, porosity before

¶The simulation results of the inward motion above Γ ≈ 1.9 are very scattered (because
the heap does not remain in the same position) and are therefore not shown in the plot.
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Figure 3.10: Circulation in the Faraday heap: The arrows indicate the particle
displacement (multiplied by five for clarity) during one driving cycle, averaged
over 10 cycles. Apart from the usual Faraday circulation close to the heap surface,
we also find a weak inverse convection role in the lower central region of the heap.

impact, etc.

So why does the heap disappear with increasing acceleration while

the inward motion of the particles increases? From the model and the

simulations, it follows that the inward motion due to air drag increases

with vibration amplitude and acceleration, but a limit is reached when

the impact of the heap on the plate becomes so severe that the outward

motion due to avalanching can never be compensated by the inward

motion of the particles.

3.5.3 Bed height

In the simulations shown previously, the mean height of the granular

bed in rest is about 14 particles diameters. In order to investigate the

influence of the bed height, a simulation was carried out with three times

as many particles, resulting in a mean height of the granular bed in rest

of about 42 particles diameters. In this system, the horizontal pressure

gradient driving the heaping mechanism is larger near the surface than

in the interior. For this reason, the average particle displacement during

one vibration cycle is larger near the surface than in the interior of the

heap (see Fig. 3.10). This is consistent with the experimental observation

in [11], where it was shown that for very deep granular beds (>500 particle

diameters), the Faraday circulation is confined to a thin surface layer.

Close inspection of Fig. 3.10 reveals a special characteristic of these deep

granular beds: Near the bottom of the heap, the particles move slightly

outward, although the pressure gradient is still directed inward at that
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location. This can be explained by the fact that the inward pressure

gradient (at a phase angle of 90 ◦ during a vibration cycle) forces the

particles toward the center of the heap, where they can move upward

against gravity but also downward. If one descents deeper from the peak

into the heap, the particles cannot move upward due to the weight of

the column of particles above. Instead, the weight of this column forces

the particles downward, resulting in a weak inverse convection roll in the

central lower region of the heap.

3.6 Heaping in a bronze-glass system

In closing this chapter, we would like to touch upon a very remarkable

effect of air on granular matter, the segregation of a mixture of equally

sized bronze and glass particles under vertical vibrations. Amazingly, the

heavy bronze particles rise to the top, while the lighter glass particles

sink to the bottom [19]. This effect can be explained as follows [20]:

Around a phase angle of 90 ◦ during a vibration cycle, the granular bed has

detached from the bottom and a gap starts to grow between bottom and

bed, causing a region of low pressure underneath the heap. This results

in an airflow through the bed which drags the glass particles - since they

have a lower inertia - more to the bottom of the container than the bronze

particles. When the bed is falling down on the bottom plate, the opposite

phenomenon occurs. However, the collision with the bottom will rapidly

compactify the granular mass, so that the particles get locked and cannot

move anymore.

This mechanism is very similar to the Faraday heaping mechanism

and this makes it interesting to simulate Faraday heap in this bidisperse

system. The simulated system (see Fig. 3.11) contains 9500 glass (ρ = 2500

kg/m3) and 4000 bronze (ρ = 8900 kg/m3) spherical particles of average

diameter 0.25 mm, with a Gaussian size distribution (σ = 0.025 mm)

to avoid excessive ordering of the bed. All other particle and vibration

parameters are equal to the ones used in the heaping simulations. The

segregation and heap formation occur simultaneously: After a few cycles,

the initially randomly distributed bronze particles start to cluster and rise

towards the top, forming a layer of heavy bronze particles on top of the

light glass particles. At the same time, two heaps are formed, with a core

of glass particles and slopes consisting of bronze particles. After 25 driving

cycles, the glass core breaks through the bronze layer, and glass particles

avalanche over the bronze slopes.
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Figure 3.11: Numerically simulated Faraday heaping in a vibrated container filled
with 4000 bronze particles (black) and 9500 glass particles (white) after 1, 5, 12
and 25 driving cycles.

3.7 Conclusion

In conclusion, the simulations give a detailed insight into the mechanism

of Faraday heaping, elucidating in particular the role of the ambient

air. Faraday’s original assertion that the air must play a key role has

been fully verified [6]; the experiments by Thomas and Squires [3] have

been validated; their proposed pressure-gradient mechanism has been

identified as the correct one; moreover, we have shown the important role

being played by the isobars running parallel to the surface of the granular

bed.

The simulations also explain how the system evolves from an initially

flat surface to a single stable heap: very small initial surface deflection

are unstable, leading to a transient state of several small heaps, which (on

a much longer time scale) move toward each other due to the reduced

inward drag force in the side of a heap that is close to another one.

Finally, we have shown that the Faraday circulation velocity increases

with vibration amplitude and acceleration. A limit is reached when the

impact of the bed on the plate becomes too strong and the outward

motion due to avalanching becomes larger than the inward motion due

to the air drag. That is why the heaping phenomenon breaks down at

large shaking strengths.
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4
Coarsening of Faraday heaps:

Experiment, simulation, and theory§

When a layer of granular material is vertically shaken, the surface sponta-

neously breaks up in small Faraday heaps that merge into larger ones on

an ever increasing timescale. We study this coarsening process by means of

a threefold approach combining experiment, simulations, and theory. The

average lifetime of the transient state with N Faraday heaps is shown to

scale as N−3 for coarsening in one dimension and N−2 for coarsening in

two dimensions.

4.1 Introduction

When a bed of fine dry sand is vertically vibrated or tapped, its initially

flat surface turns into a landscape of small heaps, which in the course

of time coarsen into larger ones. This phenomenon, known as Faraday

heaping, is one of the most celebrated and beautiful examples of the

effect of air on granular matter [1–7] and in a broader context, provides a

prime example of spontaneous pattern formation in a dynamical system

far from equilibrium [8, 9].

The dynamic equilibrium of a single heap is well understood (see pre-

vious chapter): The outward avalanches in the upper layers are balanced

by the inward motion of the deeper layers (induced by the airflow through

the vibrating bed [5, 7]), and together they form the convective flow of

particles known as Faraday circulation. By contrast, the merging of small

§Based on: H.J. van Gerner, Gabriel A. Caballero-Robledo, D. van der Meer, K. van der
Weele, and M.A. van der Hoef, Coarsening of Faraday Heaps: Experiment, Simulation, and
Theory, submitted to Phys. Rev. Lett.

H.J. van Gerner, D. van der Meer, K. van der Weele, and M.A. van der Hoef, Coarsening
in two dimensions of Faraday heaps, to be submitted.
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Figure 4.1: Coarsening of a vertically vibrated 1D granular bed, as recorded in our
experiments. It takes roughly two minutes to evolve from a flat landscape to a
single Faraday heap. Every image is taken at the same point during the vibration
cycle, when the container moves upward and the bed is pressed against the floor.

heaps into larger ones - the coarsening process (see Fig. 4.1) - is much less

understood, and quantitative experiments have been scarce [10, 11].

In the present study we introduce a new model for the coarsening

behavior, validated by experiments and detailed numerical simulations.

This threefold approach leads to the identification of the mean lifetime

τN of the N-heap state as the proper coarsening quantity. It is proven to

scale, in our 1D setup of Fig. 4.1, as τN ∝ N−3 and as τN ∝ N−2 in two

dimensions.
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4.2 Experiments

A glass box of dimensions L× H × D = 300× 100× 2.1 mm3 is vertically

vibrated using a sinusoidal driving with frequency f = 6.25 Hz and

amplitude a = 10 mm. The box contains 19.44 grams of spherical glass

particles (ρ = 2500 kg/m3) with average diameter d = 0.5 mm (and an

approximate Gaussian size distribution with σ = 0.055 mm), i.e., the

height of the granular bed in rest is about 31 particle diameters. The

above choice of parameters means that we operate at a dimensionless

acceleration Γ = a(2π f )2/g = 1.6, so that the bed detaches from the

vibrating bottom during part of the driving cycle [12]. This is necessary,

since the heaping effect relies on the air flowing into (and out of) the void

between bed and bottom, with the bed acting as a porous piston [7]. In

addition, the dimensionless energy input E = (a2π f )2/(gd) = Γa/d must

be sufficiently high in order to sustain the convective circulation of grains

within the heaps [7, 10]. Our choice of a/d = 20 gives E = 36, which lies

well above the required threshold value of E ≈ 2.0 + 1.26a/d = 27 [10] and

thus guarantees a smooth coarsening process.

Where Fig. 4.1 shows snapshots from a typical experimental run,

Fig. 4.2(a) contains the time evolution for a second run. In order to get

sufficient statistics to determine the mean lifetime of the N-heap state,

19 runs were performed. Figure 4.3 shows the number of heaps N(t) (a

decreasing step function) for all 19 experiments [14]. The inset shows the

averaged data on a log-log scale, suggesting that N(t) ∝ t−β with β close

to 0.5. We do not find the exponential decay reported by Van Doorn and

Behringer [10]. Presumably the exponential behavior is a critical case,

since it was only observed in experiments for which the energy input E
was around the value that is minimally required for heaping. When E
exceeded this threshold, as in our case, also Van Doorn and Behringer

found a clear deviation from exponential decay.

4.3 Numerical simulations

We also performed numerical simulations on the same system. Our code

combines Granular Dynamics (GD) and Computational Fluid Dynamics

(CFD) [13]: The GD part calculates the particle trajectories from Newton’s

law, with the particle-particle interactions being given by a 3D soft sphere

collision model including tangential friction, while the CFD part evaluates

the full Navier-Stokes equations for the interstitial air by a finite difference
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Figure 4.2: Evolution of the heap pattern from t = 4 s to 18 s obtained by (a)
experiment, (b) simulation, and (c) the analytical model. A stroboscopic video of
the evolving heap pattern as obtained by experiment, simulation, and model can
be found on the enclosed CD-ROM.
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Figure 4.3: Experiment: Number of heaps N as a function of time. The black dots
are the measured times when the N-heap state gives way to the (N − 1)-state; the
open circles represent the average over all 19 experimental runs. No data for N = 2
are shown [14]. Inset: The averaged data on a doubly logarithmic scale. The solid
line represents the approximate scaling behavior N(t) ∝ t−1/2.

method. The two parts of the code are coupled to account for the effect

of the air on the particles, and vice versa. The position and height of the

peaks at t = 4 s in the experiment of Fig. 4.2(a) are used to create the

starting condition for the numerical simulation [Fig. 4.2(b)]. The excellent

correspondence confirms that any unwanted side-effects in the exper-

imental setup (due to e.g. misalignment, humidity, or static electricity,

none of which are present in the numerical code) have been successfully

kept to a minimum. Apart from the heap patterns, the simulations

can provide detailed information that cannot be readily obtained from

the experiments (such as the location of isobars and the data shown in

Fig. 4.7), and which will presently be used in setting up the analytical

model.

4.4 Analytical model

Our aim is to derive equations for the time evolution of the position xi(t)
and height zi(t) of a typical heap (see Fig. 4.4), which are then combined

to determine the evolution of the whole system. A first observation, and

a key ingredient of our model, is that the slope angle is the same for all
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Figure 4.4: Part of a typical heap pattern, indicating the key parameters used in
the coarsening model. The dashed profile indicates the position of the heap after
one time step dt.

heaps and remains constant during the entire coarsening process; see

Fig. 4.1 and Fig. 4.2(a,b). At this angle, which in our experiments has the

value α = 18.5◦, the inward particle flux and the avalanching precisely

balance each other [7].

A second observation (from the simulations) is that when the bed

detaches from the vibrating plate, the lines of constant air pressure run

parallel to the slopes just below the surface [7] whereas deeper inside the

heap, the equal pressure lines flatten out. This means that below a certain

depth h the horizontal component of the air drag becomes negligible

and thus the total horizontal drag force Fx on the left part of the heap

scales with the slope length l. This force acts during a small fraction of

the driving cycle δt1 (see Fig. 4(a) in [7]) and as a result, the particles

in the left dark grey triangle in Fig. 4.4 (representing a mass ml ∝ l2)

are set in motion. Analogously, for the right side of the heap the force

is proportional to r and will be in the negative x-direction. As a result

the total effective mass (∝ l2 + r2) acquires a horizontal velocity ux ∝

δt1 (l − r)/(l2 + r2). This velocity is maintained during a considerable

fraction of the vibration cycle δt2, until the heap collides again with the

vibrating plate (see Fig. 4(b) in [7]). So during the period of each vibration

cycle, ∆t = 1/ f , the top of the heap will be displaced over a distance

∆x = uxδt2. Since δt1 and δt2 do not change during a single realization

of the experiment, the time rate of change of the horizontal position x of

the top of the heap (on a timescale much larger than the duration of a

cycle) is thus given by

dx

dt
= C

l − r

l2 + r2
, (4.1)

with C a constant that can be determined from experimental or simu-
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lation data. For this we calculate dx/dt, by differentiating the polyno-

mials that are obtained by fitting curves through the peak position data

[Fig. 4.6(a)], and (l − r)/(l2 + r2) [Fig. 4.6(b)] for all heaps as a function of

time. Most of the combined data of these figures collapses on a straight

line (Fig. 4.7) where the value for C is determined by the slope of this

line. The scatter in Fig. 4.7 can be contributed to the error margin of

approximately one particle diameter in the determination of the peak

location.

To derive an analogous equation for the change of the heap height z,

we note that the mass in a heap remains the same - in good approximation

- from one cycle to the next. This is because the main flow of material is

directed away from the valleys, towards the center of each heap, so there

is hardly any mass being exchanged through the vertical lines at the valley

positions. Thus the total area contained in a heap at time t, A(t) = z(l +
r)− 1

2 tan α (l2 + r2), will still be the same at time t + ∆t, indicated by the

dashed profile in Fig. 4.4. Setting A(t) = A(t + ∆t) [the latter with z →
z + ∆z, l → l + ∆x, and r → r− ∆x], we obtain in the limit of ∆x, ∆z → 0

the desired equation for the height z:

dz

dt
= tan α

l − r

l + r

dx

dt
= C

tan α (l − r)2

(l + r)(l2 + r2)
. (4.2)

To complete the model, we use the fact that in each cycle, after the

heap has shifted, avalanches relax the slope angles to the value α again.

This leads to a relocation of the i-th valley (between peak {xi, zi} and

{xi+1, zi+1}) such that its horizontal position x̌i is given by

x̌i =
1

2
(xi+1 − xi)−

1

2 tan α
(zi+1 − zi) . (4.3)

The change of area due to this relocation of the valleys (equal to the area

of the small grey triangle in Fig. 4.4) is of second order in dx and therefore

in dt. It thus vanishes in the limit dt→ 0 and the total mass in the system

is conserved.

The model contains one parameter C, which sets the absolute timescale

of the coarsening process. It depends on particle size and density, gravity,

and viscosity (see Eq. (1) in [7]), as well as on the vibration parameters Γ

and a/d, keeping pace with the Faraday circulation velocity (see Fig. 9(b)

in [7]). However, in a single realization of the experiment, C is simply a

constant and its value can be determined as in Fig. 4.7. With C given, one

can numerically solve the model equations; we use the experimental peak
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Figure 4.5: Evolution of the heap pattern. The black markers represent the
simulation result, the grey lines represent the result from the analytical model (see
Fig. 4.2(a,b)).
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Figure 4.6: Data used to determine the value for C: (a) Position of the peaks in
Fig 4.5 minus their initial position. The fitted curves are used to calculate the
horizontal velocity of the peaks, dx/dt. (b) The quantity (l − r)/(l2 + r2) as a
function of time.
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Figure 4.7: Validation of Eq. (4.1) from the simulation results in Fig. 4.2(b). The
slope of the fitted line gives the factor C = 0.2 10−3 m2/s. The data in this figure
are taken from the eight heaps in Fig. 4.5, with each heap being indicated by a
different marker.

positions xi(t), zi(t) at t = 4 s to define our initial condition. The solution

[Fig. 4.2(c)] is seen to match the experimental and simulated patterns very

well. Hence we conclude that the essential features of the process are

accurately captured by our model.

4.5 Mean lifetime of the N-heap state

The model is ideally suited to study the scaling behavior of the coars-

ening process. It allows us to start with an arbitrarily large number of

heaps (which in experiment would require a forbiddingly long box) and

moreover, to perform thousands of different realizations to improve the

statistics. In Fig. 4.8 we show the mean lifetime τN of the N-heap state;

the black circles represent the average over 10, 000 runs of the model, each

run starting out from N = 100 heaps with slope lengths that are uniformly

distributed between 0 and L/100∗. We see a clear power-law scaling

over the full two decades of N, namely τN ∝ N−3, and once more an

excellent agreement between model and experiment in the final decade

N = 10, ..., 3. The inset of Fig. 4.8 shows that the average number of heaps

∗If we start from a narrow distribution of heaps, the initial mean lifetimes are larger
than predicted by the power-law, but soon the distribution broadens and the lifetimes τN

converge to the straight line of Fig. 4.8.
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Figure 4.8: Mean life time of the N heap state τN as a function of the number of
heaps N. The grey circles indicate the experimental data. The black circles indicate
the data averaged over 10, 000 runs of the model starting with 100 initial heaps.
Inset: Number of heaps as a function of time (cf. Fig. 4.3).

as a function of time [N(t)] does not exhibit global power-law scaling. So

not N(t), but τN is the natural quantity to analyze from a theoretical point

of view.

4.6 Explanation of the scaling law

How does τN ∝ N−3 follow from the model? To answer this, we rewrite

Eqs. (4.1)-(4.3) in terms of the previously introduced left and right slope

lengths li = xi − x̌i−1 and ri = x̌i − xi. After some algebra this leads to





dli/dt = f (li, ri)− f (li−1, r−1) ,

dri/dt = f (ri, li)− f (ri+1, li+1) ,

(4.4)

where the function f is given by

f (u, v) = C
u(u− v)

(u2 + v2)(u + v)
. (4.5)

These equations can be non-dimensionalized as follows: We divide all

lengths li and ri by the average slope length in the N-heap state (= L/2N,

in the absence of depletion effects [14]): l̃i = 2liN/L and r̃i = 2riN/L.
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Figure 4.9: Distribution of τN (normalized by the averaged lifetime) obtained in
the 10,000 runs of the model, for N = 100 (light) to N = 3 (dark). The probability
function clearly shows an exponential distribution.

Further, we make the function f dimensionless by dividing through C (so

f̃ = f /C), and arrive at

dl̃i

dt̃
= f̃ (l̃i, r̃i)− f̃ (l̃i−1, r̃i−1) ,

and similarly for dr̃i/dt̃, (4.6)

in which the dimensionless time coordinate t̃ must be defined as t̃ =
4N2Ct/L2.

Now we focus on a single heap i in a N-heap state (i = 1, .., N) and

compute its time-evolution with Eq. (4.6) until it merges with one of

its two neighbors. This yields a dimensionless life expectancy T̃i of the

heap, which can subsequently be translated to its dimensional value:

Ti = T̃iL
2/(4CN2). So the life expectancy of an arbitrary heap in the

N-heap state scales as 1/N2, and the same will hold for the average life

expectancy Tav(N). This average life expectancy is not the mean lifetime

τN, since the first heap that merges already terminates the N-heap state.

Therefore, τN is the shortest of the N life expectancies, ensemble-averaged

over many realizations. When N is not too small, the merging events can

be considered as statistically independent, from which follows that the

life expectancy Ti of a heap i obeys an exponential distribution: P(Ti) =
P(0)e−Ti/Tav . This is indeed confirmed by direct evaluation of the model

(see Fig. 4.9). A property of this distribution is that the average minimum
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Figure 4.10: Evolution of the heap pattern obtained by the iterative model.

value of Ti (alias τN) decreases with the sample length N as Tav(N)/N.

Inserting Tav(N) ∝ 1/N2 gives τN ∝ N−3, which explains the observed

scaling behavior.

The above analysis also shows that, for the current problem, N(t) is

a more intricate quantity than τN: The total elapsed time t(N) at the

end of the N-heap state is the cumulative sum of all τN′ with N′ ≥ N.

Nevertheless, for small N we still find an approximate scaling law, since

t(N) =
Ninit

∑
N′=N

τN′ ≈
∫ Ninit

N
τN′dN′ ∝

∫ Ninit

N

dN′

N′3
, (4.7)

so that t(N) scales as N−2 for N ≪ Ninit or vice versa, N(t) ∝ t−1/2. This

is the behavior found in Fig. 4.3, as well as in the data for small N in the

inset of Fig. 4.8.

4.7 Alternative calculation of the heap height

Close inspection of Fig. 4.2 teaches us that there is a small difference

between the heap pattern obtained by the model and the one obtained by

experiment or simulation: In the model, a small heap merges at the peak

of a large heap, and the area contained by the small heap slightly increases

near the merging event. However, in the experiments and simulations, the

small heap merges into the slope of the large heap and the area contained

by the small heap remains approximately constant. This difference is
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due to the assumption in the model that no mass is being exchanged

through the vertical lines through the valleys. This assumption is not

entirely accurate near merging events: If one heap is much larger than

the other, the isobars underneath the valley are not horizontal, which

results in a small but noticeable mass flow from the small to the large

heap. For this reason, we also worked with a modified model in which

dz/dt is not calculated by Eq. (4.2), but by an iterative procedure where

the area in the individual heaps is kept constant in time (except in case

of a merging event, when the mass of the merging heaps is summed).

Figure 4.10 shows the evolution of the heaping pattern obtained with the

modified model. The agreement with the experiment and simulation is

now even better; the small heaps merge into the slopes of the large heaps

in experiment, simulation and model.

4.8 Heaping in 2D

We can extend the principles that we used to construct the one di-

mensional coarsening model to two dimensions. The change of the

momentum in the x direction of a small slice dθ of the heap (see Fig 4.11)

is proportional to the surface area of the slice ( 1
2 r2

vdθ/ cos α, where rv(θ)
is the shortest distance between the intersection line and the axis of

symmetry of the cone, see appendix B), multiplied by the value of the

unit vector in the x-direction (− cos θ). The total change in momentum

of the heaps in the x-direction is found by calculating the intersection

lines with all the neighboring heaps and integrating the slice over one

complete revolution. In order to obtain the change per unit time of the

heap position, the total momentum has to be divided by the affected

volume, which yields for the x-direction:

dx

dt
= −C

∫ 2π
0

r2
v cos θdθ

∫ 2π
0

r3
vdθ

, (4.8)

and analogously for the y-direction:

dy

dt
= −C

∫ 2π
0

r2
v sin θdθ

∫ 2π
0

r3
vdθ

. (4.9)

The derivation of an explicit relation for the change of height z of the

heaps [similar to Eq. (4.2)] is very difficult in two dimensions. However,
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Figure 4.11: Two cones representing two heaps. The intersection line between the
cones is calculated in appendix B. In the 2D model, the intersection of a heap with
all surrounding heaps is calculated first, after which the new position and height
of the heaps can be calculated with Eqs. (4.8) and (4.9) under the constraint that
the volumes of the heaps remain constant.

we can use the same principle as in the modified 1D model, and calculate

dz/dt by an iterative procedure where the volume of the individual heaps

(
∫ 2π

0
(h − rv tan α) 1

2 r2
vdθ) is kept constant in time (except in case of a

merging event, when the volume of the merging heaps is summed).

Figure 4.12(a-d) show a typical evolution of an initially flat bed ob-

tained in an experiment by Shinbrot [11]. In the experiment, the heaps

move towards each other (indicated by grey lines) until they merge. In

Fig 4.12(d) it appears that the granular material in the box is almost de-

pleted, i.e., a large amount of the particles has accumulated in the growing

heaps, leaving not enough material to sustain the heaping mechanism

around the heaps, which results in the flat bed around the collection of

heaps.

In a numerical evaluation of the coarsening model, we start with an

initial condition where the distance in the x and y direction between the

peaks has an uniform distribution between 0.5 and 1.5 L/
√

N0, with L the

dimension of the box and N0 = 49 the initial number of heaps. The

variation in the height of the peaks has an uniform distribution between

−0.05 and 0.05 L/
√

N0. Figure 4.12(e-h) show a typical evolution of the

heaping pattern obtained by a numerical evaluation of the model. The

same coarsening behavior is observed as in the experiment. In the model,

the heaps will merge until only one heap remains.
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(e)

(f)

(g)

(h)

Figure 4.12: Top view of coarsening in 2D obtained by experiment (a-d, images
taken from Shinbrot [11]) and by the model (e-h). In the experiment, heaps move
towards each other until they merge (indicated by the grey lines), just as in the
model. The velocity and direction of the peaks in the model is indicated by the
black lines originating from the peaks of the heaps. A video of the coarsening
behavior obtained by the model can be found on the enclosed CD-ROM.
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To study the statistics of the 2D coarsening behavior, we carried out

100 evaluations of the model, each starting with 49 heaps. The black

circles in Fig. 4.13 show the averaged life time as a function of the number

of heaps N. It can be seen that the model predicts a clear algebraic scaling,

with the mean life time of the N heap state τN being proportional to N−2

(against τN ∝ N−3 in the one dimensional model).

The difference between the exponents found in the 1D and 2D model

can be understood as follows: In the 1D model, a dimensional analysis

shows that the life expectancy of a heap scales with 1/N2. A similar

dimensional analysis shows that the change in the dimensionless position

of the peak in the 1D model dx̃/dt, scales with N2, i.e. the rate of change

of the peak position is reversely proportional to the life expectancy of a

heap.

For the 2D model, we normalize x and rv in Eq. (4.8) with the averaged

heap radius L/2
√

N, yielding:

dx̃

dt
= −C

∫ 2π
0

r̃2
v cos θdθ

∫ 2π
0

r̃3
vdθ

4N

L2
. (4.10)

That is, the change in the dimensionless position of the peak in the 2D

model dx̃/dt scales linearly with N. The average life expectancy of a heap

in 2D will therefore scale as 1/N and, since the life times of the heaps have

an exponential distribution, the shortest life expectancy (alias τN) scales

as 1/N times the average life expectancy (see section 4.6), For this reason,

τN ∝ N−2.

4.9 Conclusion

The essence of the coarsening of Faraday heaps, a complex dynamical

process involving not only many particles but also the interaction with

the ambient air, has been captured in a simple system of differential

equations. The model gives results that are in excellent quantitative

agreement with both the experiment and simulations. Combining the

three approaches, we have shown that τN, the mean lifetime of the N-

heap state, scales as N−3 in a one dimensional system and as N−2 in a two

dimensional system.



Appendix A 69

10
0

10
1

10
210

−3

10
−2

10
−1

10
0

10
1

τ
N

(s
)

N

2D model, 49 initial heaps
τN ∝ N

−2, obtained by theory

Figure 4.13: Coarsening in two dimensions: Mean life time of the N heap state
τN as a function of the number of heaps N. The black circles indicate the data
averaged over 100 runs of the model starting with 49 initial heaps. The black line
is the theocratically predicted scaling behavior.

Appendix A: Distribution of slope lengths

In the numerical evaluation of the model discussed previously, the di-

mensionless slope lengths, l̃i and r̃i, have an uniform distribution as

initial condition. Naturally, the initial distribution of the slope lengths

has an influence on the coarsening behavior; for example, in the extreme

case where the slope lengths are all equal, no coarsening takes place at

all. For this reason, we experimented with using different distributions.

Fig. 4.14 shows the mean lifetime of the N heap state for different dis-

tributions of the initial slope lengths. Around N = 100, the lifetime

obtained by a normal distributed initial condition is larger than the

lifetime which is obtained by an uniform distributed initial condition,

since the probability of a small slope (which is usually short lived) is small

in a normal distribution. However, after a number of merging events,

the coarsening dynamics broadens the distribution and the differences

in lifetimes disappear. For a very sharply peaked normal distribution

(σ = 0.01), the mean lifetime first oscillates around τN ∝ N−3 (see grey

crosses in Fig. 4.14), before showing the same coarsening behavior as with

the other distributions.

Clearly, the distribution of the slope lengths changes during the coars-

ening process. To investigate this, we count the number of slopes in
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Figure 4.14: Mean life time of the N heap state τN as a function of the number
of heaps N with an uniform (black circles) and normal distributions (grey circles
for σ = 0.2, grey crosses for σ = 0.01) of the initial slope lengths. The same
coarsening behavior is obtained with all three initial conditions. Inset: The three
initial distribution of the dimensionless slope lengths.

48 equally sized bins (with length 0.025 L/2N(t)) after each merging

event for all 10,000 runs of the model. Figure 4.15 shows the resulting

normalized histograms as a function of the number of heaps. Initially,

the slope lengths have the specified distribution, uniform in (a) and

normal (σ = 0.2) in (b). However, already after a few merging events the

distribution changes noticeably until, eventually, one heap remains with

a normalized slope length of 1/2. Although there is a huge variation from

the initial (N = 100) to the final (N = 1) distribution, the coarsening

behavior is the same during the whole coarsening process.

Appendix B: Intersection between two cones

In this appendix, the intersection line of two cones is calculated in polar

coordinates (x = r cos θ, y = r sin θ). The implicit cartesian equation for a

cone with index i is given by:

(x− xi)
2 + (y− yi)

2 =
(z− hi)

2

tan2 α
. (4.11)
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Figure 4.15: Probability distribution function for the normalized slope lengths
(defined immediately after a merging event0 as a function of the number of heaps.
The data is averaged over 10,000 runs of the model. Initially, the slope lengths have
the specified distribution, uniform in (a) and normal (σ = 0.2) in (b), however
already after a few merging events, the distributions changes until eventually, one
heap remains with a normalized slope length of 1/2. (c) The distributions for
all three initial conditions (uniform and normal with σ = 0.2 and σ = 0.01,
respectively) for N=100, 75, 25, and 5.



72 4. COARSENING OF FARADAY HEAPS

The equation for the first cone in polar coordinates with origin at x1, y1 is

then simply:

r2 =
(z− h1)

2

tan2 α
, (4.12)

and the equation for the second cone in polar coordinates with origin at

x1, y1 is:

r2 + r2
12 − 2r r12 cos(θ − θ12) =

(z− h2)2

tan2 α
, (4.13)

where r12 and θ12 are the distance and angle between the origins of the

first and second cone. Solving Eq. (4.12) for z and substituting this result

in Eq. (4.13) yields:

r2 + r2
12 − 2r r12 cos(θ − θ12)− (r +

h1

tan α
− h2

tan α
)2 = 0 . (4.14)

This implicit equation can be solved numerically for r and θ by using

the ‘contourc’ command in Matlab, which yields the intersection line

between the two cones. The calculation of the shortest distance between

the axis of symmetry of a cone and the intersection line, rv as a function

of θ, is then straightforward.
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5
Air-induced inverse Chladni patterns§

When very light particles are sprinkled on a horizontal resonating plate,

inverse Chladni patterns are formed. Instead of going to the nodal lines of

the plate (and forming a regular Chladni pattern), the particles are dragged

to the anti-nodes since the motion of the ambient air averaged over one

cycle is non-zero. Although the Eulerian mean velocity is directed to the

nodal lines directly above the plate, the more relevant Lagrangian mean

velocity is directed to the anti-nodes.

5.1 Introduction

A classic way of visualizing two-dimensional standing waves is by sprin-

kling coarse particles (sand) on a horizontal plate and bring it into

resonance by e.g. a violin bow. The particles will move to the nodal

lines, giving rise to the famous Chladni patterns, a standard high school

demonstration experiment [1–3]. The technique was developed by Ernst

Chladni in 1787 who actually became quite famous with his experiment

and toured extensively throughout Europe. In 1809, he was invited to

perform the experiment for Napoleon, who was so pleased with it, that

he awarded Chladni 6000 francs. Napoleon also promised 3000 francs to

anyone who could provide the mathematical theory for the sound figures.

This sum was awarded to Sophie Germain in 1816 [2].

Much less known is that very fine particles will move to the anti-nodes:

This was already noted by Chladni himself, who observed that tiny hair

shavings from his violin bow were carried to the anti-nodes. In 1831, the

effect was studied systematically by Faraday with the use of lycopodium

powder [4]. He and others showed that the inverse Chladni patterning of

§Based on: H.J. van Gerner, D. van der Meer, K. van der Weele, and M.A. van der Hoef,
Air-induced inverse Chladni patterns, to be submitted.

75
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Figure 5.1: Side view of the flexible plate resonating in its 2× 2 mode. The vertical
dimension is exaggerated 40 times.

fine particles is due to air currents induced by the vibrating plate [4–6],

dragging along the fine particles to the anti-nodes∗. The mathematical

explanation for these air currents was first provided by Lord Rayleigh

in 1884 [7] and is often referred to as Rayleigh or (since much of the

early research was concerned with air currents induced by sound waves)

acoustic streaming. However, this last term is less appropriate for the

particular streaming that causes the inverse Chladni patterns since here

the compressibility of the air plays no significant role. We therefore use

the term ‘steady streaming’ instead [8].

Pattern formation on a flexible plate is a prime example of “Newton

vs Stokes”: the Newtonian forces tend to form Chladni patterns while the

Stokesian forces tend to form inverse Chladni patterns. In this chapter,

we present direct numerical simulations which provide us with a detailed

physical picture of the interplay of the air and particles on a Chladni plate.

5.2 Numerical model

The simulated system consists of a flexible rectangular plate (40× 40 mm2)

on which 80, 000 beads with a diameter d = 0.075 mm are uniformly

distributed. At a height H = 2 mm above the flexible plate, a rigid cover

plate is mounted. The plate is flexible and pinned along its outer rim.

We excite the 2 × 2 natural mode of this plate. Ignoring the additional

bending of the plate due to gravity, the vertical deflection at any point

(x, y) is then given by (see also Fig. 5.1):

z(x, y, t) = −a cos(ωt) sin
2πx

L
sin

2πy

L
, (5.1)

∗When enough particles have collected at the anti-nodes and the shaking strength is
not too large, Faraday heaps as described in the previous two chapters are formed at each
of the anti-nodes [4].
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where ω = 2π f = 2π 200 s−1 is the natural frequency of the plate,

a = 0.075 mm the amplitude of the vibration (corresponding to a di-

mensionless acceleration Γ = aω2/g = 12.1), and L = 40 mm the size

of the plate. Note that the height of the cover H (2 mm) is one order of

magnitude larger than the thickness of the boundary layer δ ≈
√

2ν/ω =
0.17 mm, with ν the kinematic viscosity. This is sufficiently large to model

the streaming which takes place within and just above the boundary layer.

For the simulation we use the hybrid Granular Dynamics (GD) Com-

putational Fluid Dynamics (CFD) code described in chapter 2. The

GD code calculates the particle trajectories from Newton’s law, with the

particle-particle interactions being given by a 3D soft sphere collision

model including tangential friction. The CFD code evaluates the full

Navier-Stokes equations by a finite difference method. For the interaction

between the vibrating plate and the gas phase, the immersed boundary

method with 10 iterations is used (see section 2.6.2). The simulated

system is divided in 60 CFD cells along each side of the plate, and 110

cells in the vertical direction in order to accurately capture the boundary

layer above the plate. The time step used for the flow solver is 5 · 10−5 s, so

that there are 100 time steps per vibration cycle. Since the particles only

have a small influence on the gas flow above the vibrating plate (due to

the low particle volume fraction), we use one-way coupling, i.e., the flow

field is calculated for one vibration cycle (without particles present) and

subsequently used for all vibration cycles†. The flow field of the air above

the flexible plate at time t = 0.25 T (where T is the time of one vibration

cycle) is shown in Fig. 2.5. Note that a similar velocity profile is obtained at

t = 0.75 T, with the signs of ux and uy (the horizontal velocity components

of the air) reversed, i.e., the air moves to-and-fro between the anti-nodes.

At the vertical walls, periodic boundary conditions are used.

The drag force on a particles can be approximated by Stokes’ law‡:

Fdrag = 3πµgd (u− v) , (5.2)

where µg is the dynamic gas viscosity, u is the local flow velocity of the gas

phase and v is the velocity of the particle. The ratio of the (typical) drag

†It is possible to calculate the flow field during all vibration cycles and include the
interaction with the particles. However, this would lead to extremely long CPU times and
the results would be very similar.

‡The hydrodynamic interaction with the surrounding particles [9] can be neglected
because of the low particle concentration, while the history forces [10] can be neglected
since d/

√
ν/ω < 1, with ν the kinematic viscosity of air.
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(a) (b)

Figure 5.2: (a) Top view of a flexible plate resonating in its 2 × 2 mode on which
heavy particles have been sprinkled. After a few seconds most particles have
collected at the nodal lines, forming a classic Chladni pattern. (b) The same plate
with very light particles. Due to the presence of air, the particles now migrate to
the anti-nodes and after 4 seconds an inverse Chladni pattern has formed. Videos
of the formation of regular and inverse Chladni patterns can be found on the
enclosed CD-ROM.

force and gravity on a particle is then:

B =
Fdrag

Fg
=

3πµgd (u− v)

ρπgd3/6
≈ 18µg aω

ρgd2
. (5.3)

If a simulation is carried out with gold beads (ρ = 20000 kg/m3), the

ratio B is around 0.03, i.e., the motion of the particles is governed by the

Newtonian forces. Because of the oscillations of the plate, the particles

start to bounce and (since in most cases a bouncing particle impacts on

a section of the plate while it is moving upward) the successive bounces

tend to increase their kinetic energy. However, at the nodal lines the plate

has a zero velocity and the collisions with the plate and other particles

reduce the kinetic energy of the particles. As a result, starting with all

80, 000 particles uniformly distributed over the plate, within a few seconds

most of them have accumulated at the nodal lines, forming a standard

Chladni pattern [Fig. 5.2(a)].

We now reduce the density of the particles to 20 kg/m3 while keeping

the diameter constant, resulting in a typical drag force that is almost thirty

times larger than the gravitational force on the particle, i.e., B ≈ 30.
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This value is approximately the same as for lycopodium powder (ρ =
460 kg/m3, diameter d ≈ 0.016 mm [11]), which was used by Faraday in his

experiments [4]. As can be seen in Fig. 5.2(b), these light particles move

to the anti-nodes and form an inverse Chladni pattern§.

Evidently, since the motion of the particles is governed by the Stoke-

sian forces, the particles do not bounce on the resonating plate. Further-

more, the ratio between the particle response time, ρd2/(18µg) [12] and

the typical vibration time T is 0.07, so the particles follow the motion of

the gas. The physical reason for the inverse Chladni patterning is that the

to-and-fro motion of the gas averaged over one cycle is not zero. This

counter-intuitive fact is explained in the next section.

5.3 Steady streaming

It is a curious but well-known fact that geometries that move sinusoidal,

may generate a flow field that is not simply sinusoidal: In addition to (and

as a result of) the to-and-fro motion of the gas, there is a steady streaming

near the surface of vibrating boundaries [7, 8, 13, 14]. What is the physical

explanation for this phenomenon¶?

At t = 0 T, the plate has zero velocity and maximum acceleration.

The plate accelerates the gas near the surface and the momentum of

the gas is subsequently passed to the higher layers of the fluid. After

t = 0.25 T, the plate decelerates and the gradient of the horizontal

velocity in the boundary layer becomes smaller. This sequence repeats

itself half a cycle later (t = 0.5 T), but now in the opposite direction, as

indicated in Fig. 5.3(a). In this figure, the velocity at a point on a nodal

line (x = L/2, y = L/4) is shown at two time instants during the first half

of a cycle (grey lines) and at two time instants during the second half of

a cycle (black lines). Clearly, the velocities during both halves of a cycle

cancel each other and the averaged velocity is zero at this location. The

situation is different however, half way between an anti-node and a nodal

line (x = 3/8 L and y = L/4), as shown in Fig. 5.3(b). Here, the plate is

not at the same position during the acceleration phase of the first and the

second half cycle. As a result, the averaged velocity over one cycle does

not vanish, and a steady streaming occurs [blue line in Fig. 5.3(b)].

§Regular and inverse patterns formed on a flexible plate that is pinned in the middle
and excited at different modes can be seen on the front cover.

¶For a short mathematical description of steady streaming, see appendix A.
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Figure 5.3: Velocity as a function of the height at two time instants during the first
half of a cycle (grey lines) and at two time instants during the second half of a cycle
(black lines), at two different locations on the plate (see insets): (a) At a nodal line
(x = L/2 and y = L/4), and (b) at halfway between an anti-node and nodal line
(x = 3/8 L and y = L/4). The blue line represents the amplitude of the average
velocity over the complete vibration cycle (multiplied by a factor of five for clarity).
At location (a) the blue line does not deviate from zero. At location (b) there is
steady streaming (blue line deviates from zero).
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Figure 5.4: Cross section of the time-averaged Eulerian velocities at y = L/4. The
vertical dashed line marks the position of the anti-node at x = L/4. The grey lines
indicate the location of the plate at maximum deflection. The magnitude of the
averaged velocity is indicated by the colored lines while the direction is indicated
with arrows.

Figure 5.4 shows a vertical cross section of the steady streaming

velocities at y = L/4 for 0 < x < L/2. At the nodal lines (x = 0, L/2) and

anti-nodes (x = L/4) the velocity is zero, while in between, the velocity

is directed towards the nodal lines for z < 0.100 mm (z/H < 0.05) and

towards the anti-nodes above this height. The particles have a diameter

of d = 0.075 mm and for this reason one would expect the particles to

move to the nodal lines. In the simulation [see Fig. 5.2(b)] however, we

find that the opposite occurs: The particles move to the anti-nodes. To

understand this, we have to make the distinction between the Eulerian

and Lagrangian mean velocity of the gas. The Eulerian mean velocity is

the averaged velocity at a point that is fixed in space. This is the velocity

that would be measured by a probe located at a certain height, averaged

over one cycle. In contrast, the Lagrangian mean velocity is the averaged

velocity of a particle that moves with the fluid. This is the mean velocity

that would be obtained by releasing very light tracer particles above the

resonating plate.
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0.
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Figure 5.5: Path in the xz-plane of a fluid particle during two vibration cycles
at an anti-node, between an anti-node and a nodal line, and at a nodal line,
respectively. The initial position of the fluid particles (indicated with the filled grey
circles) is 0.0375 mm above the plate. The position of the fluid particle between the
anti-node and nodal line has moved to the anti-node after two cycles (indicated
by the black circle). Note that the maximum vertical displacement of the fluid
particle at the anti-node is twice the vibration amplitude (0.15 mm).

The Eulerian mean velocity is most commonly used in describing

steady streaming [6, 15, 16] since the Lagrangian mean velocity is in

general much more difficult to obtain in an analysis. In this study, the

Lagrangian mean velocity is however the more appropriate one since

the ratio B for the particles that form inverse Chladni patterns is larger

than unity (in our case, B = 30) and the Stokesian forces dominate,

i.e. the particles follow the motion of the fluid and act like tracer

particles. To illustrate the importance of the Lagrangian mean velocity,

we show in Fig. 5.5 the trajectories of three fluid particles at a height of

d/2 =0.0375 mm (z/H = 0.019) above the resonating plate (i.e., the same

height as the centers of most granular particles) during a time span of two

vibration cycles. At the anti-node, the fluid particle moves up and down

while at the nodal line, the fluid particle moves from left to right. In both

cases, the fluid particles have the same position after two vibration cycles.

In between the anti-node and nodal line however, the fluid particle has

moved to the left i.e., to the anti-node, whereas the mean Eulerian velocity

is directed to the nodal line at this location (see Fig. 5.4).

A difference in Eulerian and Lagrangian velocities may occur in all
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Figure 5.6: (a) Cross section of the time-averaged Lagrangian velocities at y = L/4.
The magnitude of the averaged velocity is indicated by the colored lines while
the direction is indicated with arrows. (b) Cross section of the time-averaged
Lagrangian velocities of one quarter of the vibrating plate at z = d/2 = 0.0375 mm
[z/H = 0.019, indicated by the arrow in (a)].
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oscillatory flows which are inhomogeneous in space and is often referred

to as the Stokes drift. This term arises from Stokes’ derivation of the

expressions that describe the net motion of a small particle near the

free surface of water waves (its Lagrangian velocity), in the direction of

the wave propagation [17]. Lighthill was one of the first to recognize

the difference between the Eulerian and Lagrangian velocities in steady

streaming [14]. However, in the case he studied, where the streaming

was caused by a standing soundwave, the difference between the two

types of velocities was considerably smaller than the steady streaming

velocity itself. In our case, where the streaming is caused by the resonating

plate, the difference is much larger and the directions of the Eulerian and

Lagrangian velocities are even opposite.

We can determine the Lagrangian mean velocity by subtracting the

initial position of a fluid particle, anywhere on the vibrating plate, from

its position after one vibration cycle (and dividing by the time T)‖. Fig-

ure 5.6(a) shows a vertical cross section of the Lagrangian streaming

velocities at y = L/4 for 0 < x < L/2. The mean velocity is directed

towards the anti-nodes for z < 0.7 mm (z/H < 0.35). Figure 5.6(b)

shows the corresponding horizontal cross section of the time-averaged

velocities of one quarter of the vibrating plate at height of half of the

particle diameter z = 0.075/2 mm (z/H = 0.019) i.e., the height where

most particles are. The inverse Chladni patterns of fine particles are

formed as a result of this mean Lagrangian streaming.

Interestingly, Dorrestijn et al. [6] found in experiments that nanobeads

(with a diameter of 0.5 µm) can move to the nodal lines of a cantilever

beam resonating in water, thus forming a regular Chladni pattern. At first

sight, this seems to contradict our own findings. In their setup however,

Dorrestijn et al. use a frequency of 0.5 MHz and a vibration amplitude

(a ≈ 0.02 µm) that is much smaller than the thickness of the boundary

layer (δ ≈
√

2ν/ω = 0.8 µm, with ν the kinematic viscosity of water),

whereas in our system (and in most Chladni plate experiments) the ratio

between the vibration amplitude and boundary layer thickness is of order

one. Presumably, the vertical displacement of the plate only plays a minor

role in the experiments of Dorrestijn et al. and the induced streaming is

more reminiscent of acoustic streaming.

In acoustic streaming, two layers of vortices can be identified [7, 18,

19]: Vortices inside the boundary layer (inner circulation) and vortices

‖In this case, we begin a vibration cycle at t = 0.25 T, when the plate has no deflection.
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inner streaming

outer streaming

ւcantilever node ⇒ velocity anti-node
ւcantilever anti-node ⇒ velocity node

←
δ
→

Figure 5.7: Sketch of the supposed streaming pattern as a result of a cantilever
beam which resonates with very small amplitude. The vertical vibration of the
beam results in an instantaneous horizontal velocity of the medium which is zero
at the anti-nodes of the beam and maximal at the nodes (see also Fig. 2.5). For this
reason, the velocity nodes are located at the anti-nodes of the beam and vice versa.

outside the boundary layer (outer circulation), which have an opposite

direction of rotation (see Fig. 5.7). The nanobeads in the experiments of

Dorrestijn et al., which are smaller than the thickness of the boundary

layer, can be dragged by the inner circulation to the nodal lines of the

cantilever beam. Particles that are larger than δ will move to the anti-

nodes due to the outer circulation, in agreement with the observation

of Dorrestijn et al. [6]. They provide an explanation similar as the

one described above, but in their analysis, the inner circulation should

be confined to the region of vibration, see Fig. 5 in [15], while in our

explanation, the inner circulation is confined to the boundary layer. Since

the vibration amplitude in their experiment (≈ 0.02 µm) is much smaller

than the diameter of the nanobeads (0.5 µm), the inner circulation used in

the analysis of Dorrestijn et al. cannot drive the nanobeads to the nodes.

5.4 Concluding remarks

In this chapter we have studied the formation of Chladni patterns on a

resonating plate by direct numerical simulations, including the flow of

the ambient air. To briefly summarize our main findings, we show in

Fig. 5.8 the complete transition between inverse patterning and regular

patterning. When the Stokesian forces dominate [B > 1, see Eq. (5.3)],

the particles are driven to the anti-nodes [Fig. 5.8(a)]. The reason for
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(a)B = 30

(d)B = 0.35

(b)B = 2

(e)B = 0.2

(c)B = 1

(f)B = 0.03

Figure 5.8: Particles on a resonating plate where B is varied [see Eq. (5.3)] by
modifying the particle density. (a) The Stokesian forces dominate and an inverse
Chladni pattern is formed. (b,c,d,e) For decreasing values of B, we see a gradual
transition towards a regular Chladni pattern. In (c) the ratio of the typical drag
force and gravity is around unity (ρ = 550 kg/m3) and the Newtonian and
Stokesian forces balance each other. As a result, the particles neither accumulate
at the anti-nodes, nor at the nodal lines. (f) Finally for B = 0.03, the resulting
pattern is clearly Newtonian dominated.

this is that the motion of the ambient air averaged over one cycle is non-

zero. In particular, the very light particles behave like tracer particles and

follow the motion of the air; their motion is appropriately described by

the Lagrangian streaming velocity of the air over the resonating plate.

Interestingly, Eulerian streaming would give a result that contradicts

experiments and simulation. The streaming phenomenon that causes

the inverse Chladni patterns is a striking example of a physical system

in which the Lagrangian velocity field proves to be more relevant than the

Eulerian one.

When we slowly increase the density of the particles (with 0.1% per

vibration cycle, allowing the system to adjust itself to the new condition),

the Newtonian forces become more important and the particles start to

bounce, forming clouds around the anti-nodes that become larger as
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the density increases [Fig. 5.8(b)]. Around B = 1 the Newtonian and

Stokesian forces are equally strong, and the clouds cover almost the entire

plate [Fig. 5.8(c)]. When the density is increased further, the Newtonian

forces dominate (B < 1), resulting in the regular Chladni pattern with the

particles accumulated at the nodal lines [Fig. 5.8(f)].

Appendix A: Mathematical description of streaming

In this appendix, we give a short mathematical description of the steady

streaming. For this, we use the momentum equation for the gas phase:

∂
(
ρgu

)

∂t
+∇ · ρguu = −∇p−∇ · τττ , (5.4)

where p is the gas phase pressure, ρg the density of the gas phase (which

we assume to be constant), τττ the viscous stress tensor and u is the

flow velocity of the gas phase. We now approximate the velocity and

the pressure by a harmonic velocity and pressure (with a zero average

over time), plus a time-independent correction, representing the steady

streaming:

u = uH + uS , p = pH + pS . (5.5)

Substituting the harmonic and streaming velocity into Eq. (5.4) and

averaging over one vibration cycle yields (note that 〈uH〉 = 0, but

〈uHuH〉 6= 0):

∇ · ρguSuS = −∇pS −∇ · τττS − 〈∇ · ρguHuH〉 , (5.6)

where the brackets indicate a time averaging over one vibration cycle. As

in turbulence modelling, the last term in the equation is commonly called

Reynolds stress [20]. This Reynolds stress drives the steady streaming.

The Reynolds stress in x-direction at y = L/4 is equal to ∂(u2
x)/∂x +

∂(ux uz)/∂z. The second term is large in the boundary layer when there

is a large velocity in both the x-, and z-direction. For this reason, the

steady streaming is much stronger near the vibrating plate than higher

up near the cover plate (where the velocity in z-direction is practically

zero). To obtain a analytical solution for Eq. (5.6), one begins by finding

a solution for uH and then substitutes this solution into Eq. (5.6) [13, 15].

Although the Lagrangian velocity field is more relevant, most studies only

calculate the Eulerian velocity field [6, 8, 13, 15] or the streaming induced

by a standing sound wave [14]. Finding the solutions for Eq. (5.6) is far
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from trivial in a 3D system like ours and we limit ourselves to the flow

fields obtained in the simulations.
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6
Gravity-induced inverse Chladni

patterns§

Inverse Chladni patterns, i.e., grains collecting at the anti-nodes of a

resonating plate, are traditionally believed to occur only when the particles

are small enough to be carried along by the ambient air. We now show -

theoretically and numerically - that air currents are not the only mecha-

nism leading to inverse patterns: When the acceleration of the resonating

plate is below g, particles will always move to the anti-nodes, irrespective

of their size. We also explain why this effect has hitherto escaped detection

in standard Chladni experiments.

6.1 Introduction

In the previous chapter, we have shown that very fine particles form

inverse Chladni patterns on a resonating plate because the particles are

dragged by the air to the anti-nodes.

In this chapter we give a proof-of-principle that all particles - also

coarse ones for which the effect of air can be ignored - are able to

form inverse Chladni patterns, by a completely different mechanism.

If the vibrational acceleration of the plate is below g, it can be shown

analytically that the net movement (over one vibration cycle) of the

particles due to gravity will be in the direction of the anti-nodes, and this is

confirmed by numerical simulation. It would be extremely interesting to

observe this effect also experimentally. However, we will show that under

standard experimental conditions the subtle mechanism responsible for

the pattern formation is overwhelmed by other effects, especially the

§Based on: H.J. van Gerner, M.A. van der Hoef, D. van der Meer, and K. van der Weele,
Gravity-induced inverse Chladni patterns, submitted to Phys. Rev. E.

91
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bending of the plate under its own weight.

6.2 Numerical simulations

The simulated system consists of a flexible rectangular plate (62× 62 cm2)

on which 80, 000 glass beads (ρ = 2.50 g/cm3, diameter 1.0 mm) are

uniformly distributed. The plate is flexible and pinned along its outer

rim. We excite a standing wave pattern in it by applying one of its natural

frequencies ωkl, corresponding to k sinusoidal half-wavelengths in the x-

direction and l in the y-direction. Ignoring the additional bending of the

plate due to gravity, the vertical deflection at any point (x, y) is then given

by:

z(x, y, t) = a sin(ωklt) sin
kπx

Lx
sin

lπy

Ly
(6.1)

(with k, l = 1, 2, 3, ...), where a is the amplitude of the vibration, and Lx =
Ly = 62 cm the size of the plate. As an example, in Fig. 6.2 we have excited

the 2× 2 mode, which for a typical stainless steel plate of 1 mm thickness

has a natural frequency of f22 (= ω22/2π) = 50 Hz (see appendix A, other

modes can be seen in Fig. 6.1).

The trajectories of the particles are calculated via the Granular Dy-

namics code discussed in chapter 2, in which the collisions (with the

plate, and between the particles themselves) are taken care of by a 3D

soft sphere model including tangential friction. The results do not de-

pend very sensitively on the precise values of the friction and restitution

coefficients. In the simulations presented here the friction coefficient is

set to 0.2, and the normal and tangential coefficients of restitution are

0.90 and 0.33, respectively. These values are used both for the particle-

plate and the particle-particle interaction. A key parameter in vibration

is the dimensionless acceleration Γ = a(2π f )2/g, i.e., the ratio of the

vibrational and the gravitational acceleration. For a given mode (with a

prescribed frequency f = fkl) the value of Γ is varied via the amplitude a.

In Fig. 6.2(a) we show the final pattern if we give the plate an amplitude

of 0.40 mm (Γ = 4.0, Fig. 6.2(a)), the dimensionless acceleration is larger

than unity over a sizeable region around the anti-nodes, with a maximum

of 4.0 at the anti-nodes themselves. The particles in these regions start

to bounce, and (since in most cases a bouncing particle impacts on a

section of the plate while it is moving upward) the successive bounces

tend to increase their kinetic energy. On the other hand, at the nodal lines

the dimensionless acceleration is zero and the collisions with the plate
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Figure 6.1: Standard (on the left) and inverse (on the right) Chladni patterns
formed on a flexible plate that is pinned in the middle and vibrating at 90, 180,
210, and 390 Hz, respectively. A movie of the formation process can be found on
the enclosed CD-ROM.
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(a) (b)

Figure 6.2: (a) Top view of a flexible plate resonating in its 2 × 2 mode, at 50 Hz,
with an amplitude of 0.40 mm (dimensionless acceleration Γ = 4.0). After 4
seconds most particles have collected at the nodal lines, forming a classic Chladni
pattern. (b) The same plate at a smaller amplitude of 0.09 mm (Γ = 0.91). The
particles now migrate from the nodal lines to the anti-nodes and after 1 minute
an inverse Chladni pattern has formed. A movie of the formation process can be
found on the enclosed CD-ROM.

reduce the kinetic energy of the particles; this effect is further enhanced by

the mutual particle-particle collisions. As a result, starting with all 80, 000

particles uniformly distributed over the plate, within a few seconds most

of them have accumulated at the nodal lines, forming a standard Chladni

pattern.

If we reduce the amplitude to a = 0.09 mm (Γ = 0.91, Fig. 6.2(b)),

the particles stop bouncing and start to migrate towards the anti-nodes.

After a while, the motion speeds up and after about one minute most of

the particles have accumulated at the anti-nodes, thus forming an inverse

Chladni pattern.

The general outcome of our simulations is that one can create either

a normal or an inverse Chladni pattern, just by varying the value of Γ: If

Γ > 1 one obtains a normal Chladni pattern, and if Γ < 1 an inverse one.

6.3 Theory

So why do the particles move to the anti-nodes for accelerations below 1

g? The explanation - as we will show - lies in the fact that the horizontal
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force on the particles, averaged over a complete vibration cycle, points

in the direction of the anti-nodes if Γ < 1. In our analysis we ignore

the influence of the ambient air, which is a good approximation for glass

spheres of 1 mm diameter. We also ignore the bending of the plate

under its own weight and that of the particles; this is a more restrictive

assumption, and we will come back to it later.

For Γ < 1 the particles will not detach from the plate and the vertical

position of the particles is given by the same Eq. (6.1) as for the plate,

except that x and y are now functions of time. For simplicity, we only

consider the x-direction, so the vertical position of a particle is:

z(x, t) = a sin(ωt) sin
kπx(t)

Lx
, k = 1, 2, 3, ..., (6.2)

where we have dropped the subscripts in ωkl for notational convenience.

The up-and-down motion of the plate affects the particle’s effective weight

W∗:

W(x, t) = −m (g + z̈(x, t))

≈ −m

(
g−ω2 sin(ωt) sin

kπx(t)

Lx

)
, (6.3)

with m the mass of the particle, and the minus sign indicates that W is

a force pointing in the negative z-direction. For Γ < 1, its magnitude

|W| is always between 0 and 2mg. It can be split in a component

perpendicular to the plate W⊥, which is counteracted by the normal force

Fn on the particle, and a parallel component W‖ which gives the particle

an acceleration along the plate’s surface.

The forces W⊥, Fn, and W‖ are shown in Fig. 6.3 at two different

instances. In Fig. 6.3(a), the plate is accelerating upwards at the location of

the particle, so |W| exceeds mg. In Fig. 6.3(b), it is accelerating downward,

so now |W| is less than mg. As a result, the component parallel to the

plate (W‖) is larger in Fig. 6.3(a) than in Fig. 6.3(b), and hence the net

acceleration over one complete cycle is directed to the anti-nodes. This

is the origin of the inverse Chladni patterns.

Let us analyze this mechanism in some more detail. The horizontal

component of the force that works on the particle is approximately equal

∗We neglect the terms in z̈ with amplitudes (2kaπ/Lx)ẋ, (2kaπ2/L2
x)ẋ2, and (kπ/Lx)ẍ.

For k = 2 all these terms are much smaller than g.
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W⊥
W‖

W

Fn (a)

(b)W‖

Figure 6.3: The effective weight W of a particle on the resonating plate and the
normal force Fn at two moments during a vibration cycle; the amplitude of the
plate has been exaggerated for clarity. The component W⊥ and the normal force
Fn balance each other, while the component W‖ gives the particle an acceleration
along the plate’s surface. It is larger in (a) than in (b) and thus the acceleration
averaged over a complete vibration cycle is directed towards the anti-nodes.

to W times the local slope of the plate:

Fhor(x, t) ≈ W(x, t)
dz(x, t)

dx

= W(x, t)
kπa

Lx
sin(ωt) cos

kπx(t)

Lx
, (6.4)

and this gives the particle both a translational and rotational acceleration.

The translational acceleration is:

ẍ(x, t) =
5Fhor(x, t)

7 m
, (6.5)

where the factor 5/7 originates from the angular inertia of the particle.

To calculate the average horizontal acceleration over a complete cycle, we

must integrate Eq. (6.5) from t = 0 to 2π/ω. Since the change in the x-

position of a particle during one cycle is very small we may treat x(t) as a

constant, which gives:

〈ẍ〉(x, t) =
ω

2π

∫ 2π
ω

0
ẍ(x, t)dt

≈ 5kπa2ω2

14Lx
sin

kπx(t)

Lx
cos

kπx(t)

Lx

=
5kπa2ω2

28Lx
sin

2kπx(t)

Lx
. (6.6)
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Figure 6.4: Horizontal acceleration field, averaged over a vibration cycle,
experienced by particles on a resonating plate in the 2× 2 mode for Γ = 0.91; only
one quarter of the plate is shown. The colored contour lines show the magnitude
of the acceleration, also indicated by the length of the arrows. The overall
acceleration points to the anti-node, explaining the formation of the inverse
Chladni pattern in Fig. 6.2(b). Note the striking similarity with the averaged
horizontal gas velocities above a resonating plate (see Fig. 5.4(b)), which can lead
to air-induced inverse Chladni patterns.

Note that the term involving g vanishes in the integration, reflecting

the fact that the time-averaged contribution of gravity to the horizontal

acceleration is zero.

With Γ = aω2/g, Eq. (6.6) may also be written as

〈ẍ〉(x, t) =
5kπg2Γ2

28Lxω2
sin

2kπx(t)

Lx
, (6.7)

where Γ is understood to be smaller than 1.

The horizontal acceleration in both the x- and y-direction can be

determined analogously, and Fig. 6.4 shows the average horizontal accel-

eration as a function of the position (x, y) for one quarter of the vibrating

plate in the 2 × 2 mode, in top view. The acceleration field is directed

to the anti-nodes, and its magnitude (indicated by the length of the

arrows, and by the contour lines) is maximal somewhere midway between

the nodes and anti-nodes. At the nodes and anti-nodes themselves the
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Figure 6.5: Position of 225 particles after 5 seconds of vibration (starting out from
a uniform distribution) on the upper right quarter of a resonating plate in the
2× 2 mode at Γ = 0.91. The grid line crossings represent the predicted positions
according to the theoretical expression Eq. (6.6), the dots are the positions obtained
by numerical simulation.

horizontal acceleration is zero. That is why the migration of particles

beginning at the nodes (as in Fig. 6.2(b)) starts slowly, then speeds up,

and finally comes to rest again at the anti-nodes.

Close inspection of Fig. 6.4 shows that the arrows are not pointing

straight towards the anti-node (except on the diagonals): They are curving

gently towards the four diagonal lines, bending around the four "islands"

of maximal acceleration. This explains the observed diagonal streamlines

in Fig. 6.2(b).

In order to quantitatively compare theory and numerical simulation,

we carried out a simulation for 900 evenly distributed particles, with

initial velocities equal to the local velocity of the plate (Γ = 0.91, just

as in Figs. 6.2b and 6.4). Thanks to the limited number of particles and

their uniform initial distribution, they do not collide with each other

during the first 7 seconds; this is important for the comparison, since the

analysis given above does not take into account any collisions. The solid

dots in Fig. 6.5 are the particle positions after 5 seconds of simulation,

whereas the line crossings represent the theoretically predicted positions

according to Eq. (6.6). The correspondence is seen to be very good.



6.4 EXPERIMENTAL CONSIDERATIONS 99

6.4 Experimental considerations

Our simulations and theoretical analysis show that inverse Chladni pat-

terns for coarse particles (not affected by the air currents around the

resonating plate) are physically feasible. Nevertheless, they never seem

to occur spontaneously, not even on plates that are smooth enough to

discard the rolling resistance of the particles. Why is this so?

The problem stems from the fact that the plate must be perfectly hor-

izontal to cope with the tiny amplitudes imposed by the condition Γ < 1.

At the outer rims of the plate this is just a question of accurate alignment,

but the horizontality is also affected by the bending of the plate under

its own weight and that of the particles. Under normal circumstances,

the deflection of the middle of the plate due to its own weight will be

considerably larger than the largest admissible vibration amplitude a,

so the particles will simply roll towards the center, overpowering any

tendency to form inverse Chladni patterns.

The deflection for a square plate of dimensions L× L, density ρ, and

thickness h can be calculated by Navier’s method, see appendix A:

dbend = 0.00406
gρhL4

D
, (6.8)

where D = Eh3/12(1 − ν2) is the stiffness of the plate, with E the

elastic modulus and ν Poisson’s ratio. This is to be compared with the

largest admissible vibration amplitude amax = g/ω2
kl (from the condition

Γ < 1), where the frequency of the k × l mode is given by ωkl = (k2 +
l2)π2L−2(D/ρh)1/2 (see appendix A), i.e.,

amax =
1

(k2 + l2)2π4

gρhL4

D
. (6.9)

Interestingly, the ratio R = dbend/amax = 0.00406(k2 + l2)2π4 is indepen-

dent of the material properties or plate dimensions: It only depends on

the mode that is excited. For the 2× 2 mode one finds R = 25.3, and even

for the 1× 1 mode the ratio is still 1.58†.

Only if the deflection of the plate is artificially suppressed (e.g., by

raising the air pressure below the plate by an amount gρh N/m2, the

†The 1× 1 mode has only one anti-node, at the center of the plate, which is also the
lowest point due to the bending of the plate under its own weight. So in this case the
inverse-Chladni mechanism and gravity co-operate to direct the particles towards the
central position. The dominant contribution comes from gravity.
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plate’s weight per square meter) may one hope to see inverse Chladni

patterning for coarse particles.

And what if we have a resonating membrane (a drumhead) instead of

a metal plate? For a membrane in vacuum, Eqs. (6.8)-(6.9) take the form

(see appendix A) dbend = 0.0737 gµhL2/T and amax = gµhL2/(k2 + l2)π2T,

where µ denotes the mass of the membrane per unit area and T the tensile

force per unit length. Therefore, R = 0.07376(k2 + l2)π2 for a membrane

in vacuum, giving 5.82 for the 2 × 2 mode, and 1.45 for the 1 × 1 mode,

which is still too much.

In air, if the membrane is sufficiently thin, the frequency of the natural

modes (and hence the ratio R) is significantly lowered because the added

mass density of the air ρadd is not negligible with respect to the density

of the membrane µh. The added mass density of air can be calculated to

be [3]

ρadd =
ρair√

k2
kl −ω2ρair/B

, (6.10)

with kkl = 2π
√

k2 + l2/L the wavenumber of the k × l mode, B the bulk

modulus, and ρair the density of the surrounding air. With Eq. (6.10), the

ratio R then takes the form R = 0.0737(k2 + l2)π2/(1 + mair/ρ). This can

indeed be smaller than unity for very thin membranes‡. However, the

deflection of the membrane is not only due to its own weight but also to

the weight of the particles: R will increase as soon as we add the particles

(unless they are exceptionally light; in that case, however, the effect of

the ambient air cannot be neglected). So, also for membranes, inverse

Chladni patterning of coarse particles can only be expected to occur if

one specifically optimizes the experimental setup.

Finally, one could think that a liquid surface, being perfectly horizon-

tal, might provide the right conditions for inverse Chladni patterning.

Indeed, particles on a resonating water surface do cluster in Chladni

patterns, either normal or inverse ones, but in this case the distinction is

due to capillarity effects, not to a variation of Γ; so the physics of the effect

is different. Hydrophilic particles gather at the nodes of the water surface

(forming a normal Chladni pattern), whereas hydrophobic particles go to

the anti-nodes [4].

‡For instance, R will be smaller than 1 for the 2 × 2 mode if one takes a rectangular
mylar membrane with side length L = 0.62 m and thickness h = 10 µm.
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6.5 Conclusion

We have shown, by numerical simulations and theory, that particles on a

resonating plate can form inverse Chladni patterns if the dimensionless

acceleration Γ is smaller than 1. On a standard Chladni plate, however,

the formation of these patterns is overwhelmed by the bending of the

plate under its own weight. Only if this bending is suppressed should

one be able to observe inverse Chladni patterning of coarse particles in

experiment.

Appendix A: Natural frequency and deflection of a stressed

plate

The partial differential equation for the vertical displacement w of a thin

membrane is [1]:

T∇2w + p = ρh
∂2w

∂t2
, (6.11)

With T the tensile force per unit length and p the vertical load on the plate.

The partial differential equation for the displacement w of a plate is [1]:

−D∇4w + p = ρh
∂2w

∂t2
, (6.12)

with

D =
Eh3

12(1− ν2)
. (6.13)

These equations can be combined into the partial differential equation

for the displacement w of a stressed plate:

T∇2w− D∇4w + p = ρh
∂2w

∂t2
. (6.14)

Deflection due to the weight of the plate

We can approximate the uniform load on the plate p = ρgh by a

summation of sine functions [2]:

p(x, y) =
∞

∑
m=1

∞

∑
n=1

amn sin(αmx) sin(βny) . (6.15)
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with

αm =
mπ

a
, βn =

nπ

b
, and amn =

16ρgh

π2mn
, . (6.16)

if m and n are odd integers and amn = 0 when m and n are even. For the

vertical deflection of the plate w, we take:

w(x, y) =
∞

∑
m=1

∞

∑
n=1

Cmn sin(αmx) sin(βny) . (6.17)

Substituting Eqs. 6.15 and 6.17 in Eq. 6.14 and setting the time deravitive

to zero, we obtain:

∞

∑
m=1

∞

∑
n=1

(−TCmn(α2
m + β2

n)− DCmn(α2
m + β2

n)
2 + amn) = 0 . (6.18)

Solving this equation for Cmn gives:

Cmn =
∞

∑
m=1

∞

∑
n=1

amn

T(α2
m + β2

n) + D(α2
m + β2

n)
2

. (6.19)

For a = b = L, and x = y = L/2 the equation for de maximum deflection

of the plate, wmax = dbend yields:

dbend =
∞

∑
m=1

∞

∑
n=1

(−1)
m+n

2 −116ρgh

π2mn(T((mπ
L )2 + ( nπ

L )2) + D((mπ
L )2 + ( nπ

L )2)2)
. (6.20)

This is a rapidly converging series. If we take T = 0, dbend becomes:

dbend = α
gρhL4

D
, (6.21)

with α is 0.00406 (see also [1]). If we take D = 0, dbend becomes:

dbend = α
gρhL2

T
, (6.22)

with α is 0.0737.

Natural frequency of the plate

If we write w(x, y, t) as AX(x)Y(y)T(t) and substitute this in in Eq. 6.14 we

obtain:

T(Y
∂2X

∂x2
+ X

∂2Y

∂y2
)− D(Y

∂4X

∂x4
+

∂2X

∂x2

∂2Y

∂y2
+ X

∂4Y

∂y4
)T + p = ρhXY

∂2T

∂t2
.

(6.23)
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Assuming X = sin(αx), Y = sin(βy) and T = sin(ωt), and ignoring p, we

get:

(−T(α2 + β2)− D(α2 + β2)2 + ω2ρh) sin(αx) sin(βy) sin(ωt) = 0 . (6.24)

With the appropriate boundary conditions for a simply supported plate,

the solutions for this equation are (amongst others):

αk =
kπ

a
, βl =

lπ

b
, (6.25)

and

ω2 =
(T(α2

k + β2
l ) + D(α2

k + β2
l )

2

ρh
. (6.26)

With a = b = L, this reduces to:

ω2
kl =

T(k2 + l2)π2

L2 + D(k2 + l2)2 π4

L4

ρh
. (6.27)

If we take T = 0, ω becomes:

ωkl = (k2 + l2)
π2

L2

√
D

ρh
, (6.28)

If we take D = 0, ω becomes:

ωkl =
√

k2 + l2
π

L

√
T

ρh
, (6.29)

Ratio between bending and vibration amplitude

In this section we will determine the ratio between the deflection due to

the own weight of the plate and the deflection due to vibration. First, we

take T = 0. The maximum deflection of a simply supported square plate

due to vibration while Γ < 1 is:

amax = g/ω2
kl =

gL4ρh

(k2 + l2)2π4D
, (6.30)

so the ratio in the 2× 2 vibration mode (k = l = 2) is:

R =
dbend

amax

=
α

gρhL4

D
gL4ρh
64π4D

= 64απ4 ≈ 25.3 , (6.31)
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i.e., the deflection due to the mass of the plate is 25.3 times larger than the

deflection due to vibrations.

We now take D = 0 i.e., the plate can be considered as a membrane.

The maximum deflection of a membrane due to vibration while Γ < 1 is:

amax = g/ω2
kl =

gL2ρh

(k2 + l2)π2T
, (6.32)

so the ratio in the 2× 2 vibration mode (k = l = 2) is:

R =
dbend

amax

=
α

gρhL2

T
gL2ρh
8π2T

= 8απ2 ≈ 5.82 , (6.33)

i.e., the deflection due to the mass of the membrane is 6 times larger than

the deflection due to vibrations.

We can conclude that the deflection of the plate due to its own weight

will always be 6 to 25 times larger than the deflection due to vibrations,

even when a tensile stress is applied on the plate.
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7
Storage and discharge of a granular

fluid§

Experiments and computational simulations are carried out to study the

behavior of a granular column in a silo whose walls are able to vibrate

horizontally. The column is brought to a steady-fluidized-state and it

behaves similar to a hydrostatic system. We study the dynamics of the

granular discharge through an opening at the bottom of the silo in order

to search for a Torricelli-like behavior. We show that the flow rate scales

with the wall induced shear rate, and at high rates, the granular bed indeed

discharges similar to a viscous fluid.

7.1 Introduction

One of the most conspicuous laboratories in granular physics is a silo full

of grains. If the column inside the silo is in repose, it behaves as a strange

solid: the grain-grain interactions break up the symmetry imposed by

gravity and a screening effect appears, redirecting most of the weight of

the column onto the side walls of the silo (Janssen effect [2]). This, of

course, is an annoying phenomenon for a farmer; not only due to the

impossibility of knowing the real mass the silo holds, but because the

walls might not sustain the normal forces applied by the grains. If we now

discharge the silo through a hole made at its bottom, the material flows,

but it behaves as a strange fluid. Even if the diameter of the aperture is

larger than the size of the grains, clogging structures appear interrupting

the discharge (jamming effect [3, 4]). Due to the confluence of these

§Published as: Hector Pacheco-Martinez, Henk Jan van Gerner, and J. C. Ruiz-Suárez,
Storage and discharge of a granular fluid, Phys. Rev. E 77, 021303 (2008). The numerical
work described in this chapter is to be considered part of this thesis. The experiments are
work of Hector Pacheco-Martinez et al. and are only included for clarity reasons.

105



106 7. STORAGE AND DISCHARGE OF A GRANULAR FLUID

two phenomena, and the importance they have in industrial silos and

hoppers, granular storage and discharge have been studied profusely over

the decades.

The Janssen effect states that the mass measured at the bottom of

the silo is not the real mass M one pours into it, but an apparent one

that follows the relation Mapp = Ms(1− e−M/Ms); where Ms is the mass

measured at the bottom of the silo when saturation is reached. This

effect was observed by Janssen at the end of the 19th century, but it is

still a matter of study nowadays. Indeed, well controlled experiments

have been carried out recently in laboratory silos [3–5]. Also, it has been

demonstrated that the Janssen law is valid even if the side walls move

vertically [6].

Grain discharge from a silo was first studied by engineers (see the

review of Nedderman et al. [7]). Within that community, in 1960 Beverloo

and coworkers proposed, after some systematic experiments changing

several variables, the formula used today to correlate the outflow rate W
with the diameter D of the aperture [8]: W = ζρBg1/2(D − kd)5/2, where

ζ and k are constants, g is the acceleration of gravity, and ρB the effective

density of the granulate. While this expression is empirical, it can be also

deduced from basic dimensional considerations [7].

Two important behaviors are observed during the discharge. Firstly,

in order to obtain a continuous flow, the diameter of the outlet has to be

greater than a critical diameter Dc (if the grains are spherical, the value of

Dc lies between 4 and 5 times the diameter of a single grain d). Secondly,

the discharge rate is constant and independent of the column height H
(usually called the head). This second phenomenon is puzzling, because

it contrasts with the case of a normal liquid flowing out from a container,

where the flux W decreases as H decreases (if the liquid has very low

viscosity, W varies according to Torricelli’s law: W is proportional to H1/2).

Despite some unsolved concerns in the behavior of dense granular

flows, the extended belief in the literature is that such flows are governed

by the rapid formation of stress-bearing structures due to inter-particle

interactions. Furthermore, since grains are inelastic, the rather fast

collapse into such structures imposes a time scale. When this scale is

shorter than the scale of the time imposed by the strain rate in the system

(normally the case in gravity-driven flows), the grains move coherently [9].

Is the formation of such structures near the hole of a silo, and the

velocity correlation of the grains, beneath the constant discharge rate in a

silo? A plausible strategy to advance the understanding of this problem is

to inject energy in the system. In fact, by shearing the column and fluidize
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it, we could overcome the formation of arches and learn about the effect

they have in the discharge dynamics. However, we have to inject energy

to the core of the column on a time scale shorter than the one imposed

by grain inelasticity. To our knowledge, only few works have studied

the discharge rates in vibrating hoppers, silos, or hourglasses [10–13].

However, in all these cases, the containers were shaken either vertically

or horizontally as whole units.

Our experimental setup is different. We constructed a novel silo

able to fluidize the entire column in steady-state conditions with no

convection. The aim of the present work is to study the discharge of

such steady-state vibro-fluidized granular column. We complement our

experimental study with 3D computer simulations.

7.2 Setup

The silo is a segmented container composed of eight independent acrylic

panels, see Fig. 7.1. The panels, with dimensions 1 × 20 × 50 cm, have

at their corners 1 cm diameter steel bearings. These bearings have the

function of supporting the weight of the panels, allowing as well the

possibility of back-and-forth small movements. Each one of the bearings

rest on metal pieces soldered onto a heavy metal structure. The panels

are firmly attached to power speakers, these are also fixed to the structure

and are connected in parallel, feed by a high-power amplifier (EG-4000)

connected to a function generator (HP-33120A). Two panels, one on top

of the other, form a wall. Therefore, the silo has 1 m of height and 400 cm2

of cross section. Neighboring walls move out of phase (while two opposite

walls move in, the others move out). In doing this, we maintain the total

volume of the granular column constant. The panels do not touch each

other (the space left between them and the vertical beams of the structure

is 1 mm). A similar wall-moving container has been used by us elsewhere

to fluidize a granular bed and prove Archimedean buoyancy [14]. We use

very light particles (polystyrene spheres of density 16 kg/m3) to fill the silo.

The mean diameter of the spheres is 4.65 mm with a friction coefficient of

0.4± 0.1. The maximum peak-to-peak vibration amplitude of the walls is

3 mm. In order to avoid static charges, the spheres were treated with an

antistatic spray, although some times few of them were attracted to the

walls.
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Figure 7.1: Photograph of the real silo.

7.3 Experiments

In our first experiment, particles were slowly poured into the silo. The

bottom of it, an acrylic panel also separated from the lateral walls and the

structure, was fixed to a balance. During the filling process, the function

generator is turned off. In order to keep the walls firmly fixed, the 32

roll-bearings were glued onto the small bases they roll. In Fig. 7.2 we

plot the mass Mapp (measured with the balance) versus the real mass M
poured into the silo. We obtained the expected Janssen’s effect. Next,

we empty the silo and repeat the pouring process. This time, however,

the walls are put to vibrate at a frequency of 20 Hz and amplitude of 1.5

mm (previously, the glue on the bearings was removed). The data are

also plotted in Fig. 7.2. Instead of an exponential curve, a straight line

Mapp = M is obtained. This result indicates that Janssen’s effect vanishes

and the entire mass of the column is received by the bottom. Since this is
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Figure 7.2: Plot of the mass measured at the bottom of the silo as a function of
the mass poured into it. The triangular points were taken using static walls. The
circular points were obtained experimentally with vibrating walls. With static
walls, the measured mass follows Janssen’s law, which is indicated by the dashed
curved black line. With vibrating walls, a hydrostatic behavior is obtained, which
is indicated by the dashed straight black line. The dark gray line is obtained in a
simulation with vibrating walls. The light gray line is obtained using static walls.
Both the total mass and the mass on the bottom obtained in the simulation are
multiplied by five for comparison with the experimental results.

what occurs in standard liquids, the granular fluidized column behaves,

apparently, similar to a hydrostatic system.

It is well known that Janssen’s effect vanishes in silos with frictionless

walls. Indeed, in such ideal conditions stress paths do not “anchor" at

the walls and the bottom of the silo receives the entire weight of the

column. But the system is statically inert in that case, not hydrostatic.

In our vibrating silo the weight of the column is not only borne entirely by

the bottom, but, in addition, the particles jiggle around their equilibrium

positions. We carried out a simple experiment to grasp the nature of

this steady dynamics. We introduced into the bed a hollow spherical

intruder made of polystyrene (effective density of 6 kg/m3 and diameter

12 cm). We observe that the intruder rises to the surface. Since there is no

convection [15], air drag [16], or inertia [17] (essentially because there is

no vertical vibration applied to the silo), the only mechanism to segregate

the intruder to the top is Archimedean buoyancy. Buoyancy is a physical

effect due to the hydrostatic pressure acting on an intruder inside a fluid

(there is more pressure on the lower side of the intruder than above it)

and this is precisely the physical meaning of the straight line plotted in
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Figure 7.3: A silo discharge experiment. The mass leaving the silo is plotted as a
function of time, for different scaled outlet diameters ( f = 20 Hz, a = 1.5 mm).
The linear behavior means that the flow rate is constant.

Fig. 7.2. The reader can find a thorough discussion on this subject in our

previous work [14].

We now discharge the silo through a hole made at its bottom and

measured the out flowing mass as a function of time. We do this for several

holes, always with diameters larger than Dc to avoid jamming. First, we

discharge the silo with still walls. The obtained straight lines (see Fig. 7.3)

confirm that the outflow is constant in time. Moreover, the slopes of these

lines, as a function of D, conform to the power law found by Beverloo (see

Fig. 7.4).

Finally, we discharge the silo while the walls vibrate. We have shown

that this special shearing is able to continuously break the arches at the

walls, producing hydrostatic-like conditions (at least from the point of

view of Buoyancy). However, will it modify the way the silo discharges?

Under the above shearing conditions (20 Hz and amplitude of 1.5 mm)

the answer is that it does not. The results are identical to the ones plotted

in Fig. 7.3.

An important difference is, nevertheless, observed: when the walls are

still, a funnel on the free surface of the head is formed, more profound

at the end of the discharge, indicating that the particles in the core of the

column descend faster than particles near the walls. However, when the

walls vibrate, the funnel on the surface does not form and we observe

instead a descending flat head. This, of course, can be easily explained:

due to the vibration, the friction near to the walls decreases, the particles

descend faster and, therefore, the head remains flat.
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Figure 7.4: Flow rates plotted as a function of the outlet diameter. The black
markers indicate the results obtained from the experiments and the gray markers
indicate the results obtained from the simulation, both for static and vibrating
walls ( f = 20 Hz, a = 1.5 mm). The solid lines are curves fitted with Beverloo’s
model. The parameters used are shown in the body of the figure, where C =
ζρBg1/2.

Summarizing, the Janssen’s effect disappears when the walls vibrate,

however, despite the column is fully fluidized, the discharge dynamics still

satisfies Beverloo’s scaling (although the free surface morphology of the

head changes). Air drag, during a silo discharge, is an important issue. It

has been shown that an adverse pressure gradient builds up at the bottom

of the silo and acts on the particles close to the outlet [18]. However, since

the silo is sectioned, there is no pressure gradient built along the column.

Thus, air drag can not explain our findings. In order to explain the above

experimental results, we explore the dynamics of the silo discharge with

3D computer simulations.

7.4 Numerical simulations

Some computational works have been carried out in the past to study the

discharge of silos in two and three dimensions [19, 20]. Vibrating hoppers

have been also investigated [11]. However, we perform simulations in 3D

silos with the extra ingredient of having horizontally moving walls. For

this, we use the Granular Dynamics code described in chapter 2. The

particles interact with each other via a soft-sphere model which includes

tangential friction. Due to the fact particles in the column are in contact
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to each other all the time, friction is important to be considered. The

system that we studied in the simulations contained 50000 particles with

a density of 16 kg/m3 and an averaged diameter of 4.65 mm. A Gaussian

size distribution with a standard deviation of 0.465 mm was applied to

avoid excessive ordering of the particles in the silo. The dimensions of the

silo were 0.1× 0.1× 0.5 m (W × D× H).

First, the coefficient of restitution was set to the value of 0.9 for

the normal direction and 0.33 for the tangential direction. The friction

coefficient was set to 0.3. For the particle-wall interaction, the same

collision parameters were used. The virtual silo was filled and we plotted

the mass transferred to the bottom versus the mass poured inside (light

gray line in Fig. 7.2). Both the mass on the bottom and total mass

were multiplied by five. Although the light gray line has been scaled

in order to compare with the real data, it is obvious that it corresponds

to the Janssen’s exponential curve. Such result is an indication that the

computational code gives the expected arch-shielding behavior found in

silos. Thereafter, we filled the silo while the walls were vibrating. As in

the real experiment, the result is a straight line (dark gray line in Fig. 7.2),

indicating that hydrostatic like conditions are obtained.

Next, we perform simulations to analyze the dynamics of the granular

flow through openings made in the bottom of the silo for still walls and

walls vibrating with a frequency of 20 Hz and amplitude of 1.5 mm. The

results confirm our experimental observations: with or without moving

walls, the discharge rates are constant and conform to Beverloo’s law

when plotted as a function of D, see Fig. 7.4.

In order to understand why the discharge rates are constants despite

the column fluidization, we pay attention to the stress distribution during

the discharge process. In Fig. 7.5(a) we plot the mass carried by the

bottom and by the walls before and after the orifice is opened (t = 15

s). Before the discharge (orifice closed), the mass is borne entirely by the

bottom, confirming once more the hydrostatic conditions. However, as

soon as the hole is opened, the hydrostatic condition is lost and the walls

receive part of the weight, reestablishing the Janssen’s effect. This may

explain why the rates of discharge are constant despite the hydrostatic

regime of the column.

We can go beyond our experimental capabilities and investigate com-

putationally what happens if larger shear rates are used. In Fig. 7.5(b)

we show the results at a higher vibration strength (frequency 50 Hz and

amplitude 3 mm). Here, the silo discharges differently: the walls never

recover weight and the discharge is not constant, following a Torricelli-
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Figure 7.5: (a) Mass carried by the bottom (light gray line) and walls (dark gray
line) during the discharge. The mass leaving the silo is indicated with black lines.
The dashed lines resembles Beverloo’s and Torricelli’s discharge. The walls are
vibrating with a frequency of 20 Hz and an amplitude of 1.5 mm. (b) Discharge
at a higher shaking strength (frequency 50 Hz, amplitude 3 mm). The discharge
follows a Torricelli like behavior. (c) Discharge with no vibration and frictionless
walls. The discharge deviates only slightly from a straight line.
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(a) (b) (c)

Figure 7.6: (a) Cross section of the granular column with walls vibrating at a
frequency of 20 Hz and amplitude of 3 mm. A light color indicates a high particle
force whereas a dark color indicates a low force. Force chains can be identified. (b)
and (c) Cross section of the granular column with walls vibrating at a frequency
of 50 Hz and amplitude of 3 mm at two instances during a vibration cycle. In (b),
the column is detached from the wall. The closure of the gap causes a shockwave
through the column, as can be seen in (c). However, this shockwave does not
influence the outflow rate since this rate scales with the shear rate. A movie of
these simulations can be seen in [22].

like behavior (see how the plot of the mass poured out of the silo bends).

It could be argued that the complete absence of wall friction (due to

vibration) is responsible for this behavior. However, in Fig. 7.5(c) we show

simulations for a still silo with frictionless walls and clearly observe that

the discharge deviates only slightly from a straight line. Fig. 7.6(a) shows a

cross section of the granular column with walls vibrating at a frequency of
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20 Hz and amplitude of 3 mm. The color in the beads indicates the force

chains distribution. Although a rigorous analysis of force chains is beyond

this study, it is illustrative to show how these chains form each vibration

cycle. Figures 7.6(b) and (c) show cross sections of the granular column

with walls vibrating at a frequency of 50 Hz and amplitude of 3 mm at

two instants during a vibration cycle. In (b), the column is detached

from the wall. This is caused by the large acceleration of the walls; when

two walls move inward, the granular mass can either move outward or

upward. When the pressure needed to accelerate the particles outwards

is larger than the pressure of to the particles above, the particles can not

follow the walls anymore but will move upward instead, and the column

detaches from the wall. This is also the reason why with vibrating walls,

a bulge is formed on the free surface of the granular mass. The closure

of the gap causes a shockwave through the column, as can be seen in (c).

However, this shockwave does not influence the outflow rate. A movie of

these simulations can be seen here [22].

As the walls of the silo move in and out, the granular column is sheared

with a shear rate approximately four times the velocity of the wall divided

by the width of the silo. At a frequency of 20 Hz and amplitude of 1.5

mm, this wall induced shear rate is around 8 s−1. However, there is

also a gravity induced shear rate due to the discharge of the particles.

This gravity induced shear rate is approximately the outflow velocity

divided by the radius of the aperture, around 30 s−1, i.e. higher than the

wall induced shear rate. At a frequency of 50 Hz and amplitude 3 mm,

however, the wall induced shear rate increases to 38 s−1. Is this shear rate

increase what causes the Torricelli like behavior observed in Fig. 7.5(b)?

Fig. 7.7(a) shows the averaged (over 15 cycles) flow rates as a function

of the pressure on the bottom of the silo for different cases. We also

carried out one simulation in a box with dimensions of 0.15× 0.15× 0.75

m (W × D × H) (i.e., 1.5 times larger than the box used in the former

simulation) and 2.25 times as many particles at a frequency of 50 Hz and

an amplitude of 2 mm. The flow rate in this box is lower than the flow

rate in the smaller box vibrating with the same frequency and amplitude.

We observe that the only two sets of data showing Torricelli like behavior

are the ones obtained at 50 Hz with amplitudes 2 and 3 mm. This is

more evident after rescaling the outflow rate (by subtracting the constant

outflow velocity with static walls and dividing by the walls induced shear

rate, see Fig. 7.7(b)). Although the transition between low and high shear

regimes is gradual, the change on the silo discharge produced by a high

shear is very clear.
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Figure 7.7: (a) Flow rates plotted as a function of the pressure on the bottom. All
the results are obtained in simulations using a box with a depth and width of 0.1
m, except the dark gray triangles, for which a box with a depth and width of 0.15 m
was used. Note that, with the same vibration parameters, the flow rate in the large
box is lower than the flow rate in the standard box. The restitution and friction
coefficients are 0.9 and 0.3, respectively. (b) Scaled flow rates plotted as a function
of the pressure on the bottom. The flow rates from (a) are scaled by subtracting the
constant flow rate with static walls divided by the walls induced shear rate. The
data collapses reasonably well for low and high shear rates, indicating that the
flow rate scales with the wall induced shear rate.
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Figure 7.8: Scaled flow rates plotted as a function of the pressure on the bottom.
The restitution and friction coefficients are, respectively, 0.7 and 0.3.

Finally, we investigate the effect produced on the discharges when

both the restitution and friction coefficients are changed. Values as low

as 0.70 for the first one, and as high as 0.50 for the second, were used.

The discharge rates (averaged over 15 cycles) do not change much and

keep scaling reasonably well (Figs. 7.8 and 7.9). The tangential restitution

coefficient has also been changed, but no significant sensitivity has been

found with this parameter.

7.5 Conclusion

We have carried out experimental and computational work to study the

discharge of a fluidized granular column in a silo with moving walls. We

have shown that, at intermediate shear rates, the column attains com-

plete fluidization: the Janssen’s screening effect disappears, the pressure

becomes linear, and a clear buoyancy effect on light intruders is observed.

However, despite the fluidized condition of the column, upon discharge,

the screening is recovered (the hydrostatic like condition is lost) and the

discharge rate of the silo is constant. Higher shear rates are necessary to

fully suppress screening and observe Torricelli-like discharge rates.
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8
General conclusion and outlook

The main theme of this thesis has been the influence of the interstitial air

on the behavior of granular matter, which for relatively small particles can

be very pronounced. We have focused on two examples that illustrate this

in a particularly clear manner:

• Faraday Heaping - The formation of Faraday heaps on a vibrating

plate is caused by a subtle interplay between the Stokesian forces

(drag, air pressure) and the Newtonian forces (from collisions and

gravity). The former drive the particles toward the center of the

heap while the latter drive the particles outward. The slope angle

of a stable heap is determined by the balance between the opposite

particle fluxes from the Stokesian and Newtonian forces. Also the

coarsening of a landscape of many small heaps into one large heap

was shown to be a result of these two types of forces.

• Chladni patterning - When particles are sprinkled on a resonating

plate, the Newtonian forces will drive relatively large particles to

the nodal lines, giving rise to the famous Chladni patterns, whereas

very fine particles are driven to the anti-nodes by the Stokesian

forces. We have made a detailed study of the air currents that drive

these fine particles. We also found a novel phenomenon: When the

acceleration of the resonating plate is below g, particles will always

move to the anti-nodes, irrespective of their size or weight, since in

this case both the Stokesian and the Newtonian forces are directed

toward the anti-nodes.

The numerical code has also been used to investigate the discharge of

a granular fluid through an orifice of a container. We found that when

the walls of the container are vibrated very strongly, the granular bed

discharges similar to a normal fluid i.e., the outflow velocity grows with

the height of the column.
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Apart from the aforementioned examples, there are also many other

phenomena where the interstitial air plays an important role and which

could be investigated by the numerical model described in this thesis.

Two phenomena of particular interest for future research are:

The granular jet - A large intruder impacting on a bed of fine sand

particles results in a surprisingly vigorous jet which shoots up from the

surface of the sand [1]. Recently, it was shown in experiments that the

height of the jet and the penetration depth of the intruder strongly depend

on the ambient air pressure [2, 3].

The Brazil nut effect - When a bed of granular particles containing a

large intruder (the “Brazil nut”) is shaken, the intruder ends up on the

surface. It has been shown experimentally that the rise velocity of the

intruder depends on the presence of air [4, 5]. The interstitial air can even

cause an intruder to sink that would otherwise rise [6].

In both these proposed examples, the interaction of the large intruder

with the air can be calculated by the immersed boundary correction

method, while the interaction of the small particles with the air is handled

via (empirical) drag relations. The typical number of particles in a gran-

ular jet experiment (≈ 109) is however about 500 times larger than what

is currently feasible in our numerical simulations. This problem could be

solved by implementing an axisymmetric version of the numerical code,

which is relative straightforward. Another remedy would be to use larger

particles together with an increased viscosity in the simulation, in order

to maintain the same ratio between the air drag and gravity forces as in

the experiments. Recently, a parallelized version of the numerical model

has been implemented within our research group, which will enable us to

investigate larger systems in less time.

In the phenomena discussed above, the Newtonian and Stokesian

forces compete for dominance. Other forces - such as electrostatic

forces [7], capillary forces in the presence of a liquid [8] and, for much

smaller particles, Van der Waals forces [9, 10] - do not seem to play a

crucial role. In the experiments described in this thesis, we actually

have done our best to minimize the influence of these force by applying

an anti-electrostatic spray on the particles and drying them before use.

The next step in granular research however, would be to take also these

forces into account, experimentally and in the numerical model [7, 11].

The few studies that have been performed in this direction (for instance

coarsening in electrostatically driven granular media [7]) show that this is

a very promising field for future work.
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Summary

Granular materials can be encountered everywhere: In everyday life

for example as sand, sugar, and rice, or in natural processes such as

avalanching and desert formation. Also in industry granular materials are

abundant, since most raw materials are supplied in the form of grains,

and a thorough understanding of granular matter is essential in order to

efficiently handle these materials. Most papers on the subject have dealt

almost exclusively with systems in which the effect of the ambient air is

ignored, assuming that the motion of the particles is governed by gravity

and mechanical contact forces only. While this is a valid approximation

when the particles are large (diameter & 1 mm), for smaller particles

the air actually has a pronounced influence and must be taken into

account. In this thesis we focus on particles of intermediate size, where

the “Stokesian” forces (drag, air pressure) and the “Newtonian” forces

(from collisions and gravity) compete for dominance.

Numerical simulations can play an important role in studying the

interplay between the grains and the interstitial air, since they can pro-

vide data that is not always accessible in experiments and the different

parameters are easier to control. In this thesis, a numerical model to

calculate the motion of all individual particles in the granular material is

used, together with a model for the calculation of the interstitial air. The

interaction between small particles and the air is handled via (empirical)

drag relations. The interaction of the air with large objects, such as a

wall or a large sphere, is implemented via the cell cut method and the

immersed boundary method.

The numerical model is used to simulate the motion of particles on a

vibrating rigid plate, generating the famous Faraday heaps known from

experiment. A detailed analysis shows that the particles are dragged

towards the center of the heap by the airflow through the bed (i.e.,

the Stokesian forces) during the phase when the gap between bed and

vibrating bottom is growing, and avalanche down on the surface (due

the Newtonian forces) after the heap comes down on the vibrating plate

again. The heap angle is determined by the balance of the constructive

Stokesian and destructive Newtonian forces. Importantly, the simulations

also explain the experimentally observed coarsening of a number of small

heaps into larger heaps.

The insight obtained by the simulations is used to develop a mathe-

matical description for the coarsening behavior, which captures the es-

sential features of this complicated process in two differential equations.

The results of the mathematical description are in excellent agreement
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not only with simulations, but also with experiments performed in our

lab. We deduce from the mathematical description that the average life

time of a N−heap state scales as N−3 in one dimension, and as N−2 in

two dimensions.

Next, we turn to another prime example of the interplay of granular

matter with the ambient air: A classic way of visualizing two-dimensional

standing waves is by sprinkling coarse particles (sand) on a horizontal

plate and bringing it into resonance by e.g. a violin bow. Relative large

particles will move to the nodal lines, giving rise to the famous Chladni

patterns (a standard high school demonstration experiment), whereas

very fine particles will move to the anti-nodes. This was already noted

by Chladni himself, who observed that tiny hair shavings from his violin

bow were carried to the anti-nodes. The motion of the particles on the

vibrating flexible plate is simulated, and we are able to reproduce both the

standard and inverse Chladni patterns. It is shown that the fine particles

move to the anti-nodes due to air currents induced by the vibrating plate.

Air currents are however not the only mechanism leading to in-

verse patterns: We show - theoretically and numerically - that when

the acceleration of the resonating plate is below g, particles will always

move to the anti-nodes, irrespective of their size or weight. We also

explain why this effect has hitherto escaped detection in standard Chladni

experiments. Summarizing, for very fine particles, the Stokesian forces

dominate and inverse Chladni patterns are formed, while for coarse

particles, the Newtonian forces dominate and can create either regular

or inverse patterns, depending on the shaking strength.

Finally, the discharge of a granular fluid through an orifice, such as

one finds for instance in a grain silo, is investigated. With static walls, the

outflow velocity is known to be independent of the height of the granular

column. It was believed that this was due to the fact that part of the

granular mass is carried by the walls instead of the bottom plate of the

silo. We show however that even when the walls are vibrated horizontally

in a experiment, and the weight is fully carried by the bottom plate,

the outflow velocity remains independent of the height of the granular

column. Only when the walls are vibrated very strongly, the granular bed

indeed discharges similar to a normal fluid i.e., the outflow velocity grows

with the height of the column.

In conclusion, we have shown that for particles of intermediate size,

the Stokesian and the Newtonian forces compete for dominance, which

leads to interesting phenomena like Faraday heaping and Chladni pat-

terning. The numerical model described in this thesis can also be used to
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simulate other phenomena where the interstitial air plays an important

role (such as the granular jet or the Brazil nut effect) and, with appropriate

modifications, to study systems where also electrostatic or capillary forces

join the Newtonian and Stokesian forces.





Samenvatting

Granulaire materie is overal: we komen het tegen in ons dagelijks leven

– in de vorm van zand, suiker of rijst – en in natuurlijke processen zoals

lawines en woestijnvorming. Ook in de industrie speelt granulaire ma-

terie een belangrijke rol, aangezien veel grondstoffen worden aangeleverd

in granulaire vorm. Voor een efficiënte verwerking van deze grondstoffen

is een diepgaand begrip van granulaire materie onontbeerlijk. In het

merendeel van de studies die tot dusverre zijn verschenen, wordt de

invloed van de omringende lucht op de deeltjes verwaarloosd en beperkt

men zich tot de zwaartekracht en de contactkrachten tussen de deeltjes

onderling. Dit is een redelijke benadering indien de deeltjes voldoende

groot zijn (diameter & 1 mm), maar voor kleinere deeltjes is de invloed

van de lucht beslist niet verwaarloosbaar. In dit proefschrift richten we

ons op deze kleinere deeltjes, waarvoor zowel de “Newtoniaanse” krach-

ten (geleverd door botsingen en zwaartekracht) en de “Stokesiaanse”

krachten (geleverd door de lucht) een belangrijke rol spelen. Zoals

de titel van het proefschrift reeds aangeeft, concentreren we ons met

name op systemen waarin de Newtoniaanse en Stokesiaanse krachten

elkaar tegenwerken. Dit geeft niet alleen een interessante strijd om de

hegemonie te zien, maar stelt ons bovendien in staat om de diverse

effecten die bijdragen aan de beweging van de deeltjes goed van elkaar

te onderscheiden.

Numerieke simulaties spelen een belangrijke rol in de bestudering

van granulaire materie. Ze leveren informatie die niet eenvoudig (of

vaak zelfs helemaal niet) verkregen kan worden via experimenten, zoals

bijvoorbeeld de precieze positie en snelheid van elk deeltje. Boven-

dien zijn de verschillende parameters – zoals de mate van inelasticiteit

van de botsingen of de luchtdruk – in te stellen op iedere gewenste

waarde, hetgeen in experimenten uiteraard veel problematischer is. In

dit proefschrift gebruiken we een numeriek model dat de beweging van

alle individuele deeltjes berekent in samenspel met de stroming van de

lucht. De interactie tussen kleine deeltjes en de lucht wordt berekend met

behulp van (empirische) relaties voor de luchtweerstand. De interactie

van de lucht met grotere voorwerpen – zoals een wand of een bal die zich

te midden van de kleine deeltjes bevindt – wordt berekend via ofwel de

‘cell cut’ methode, ofwel de ‘immersed boundary’ methode.

Het eerste systeem dat we bestuderen is een granulair bed (met een

dikte van enkele tientallen deeltjesdiameters) in een verticaal trillende

bak. De amplitude en frequentie van de opgelegde trilling zijn zodanig

gekozen dat het oorspronkelijk vlakke oppervlak van het bed spontaan
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vervormt tot een landschap van kleine heuveltjes. Dit zijn de befaamde

‘Faraday heaps’, genoemd naar Michael Faraday die het verschijnsel in

1831 als eerste waarnam. Een nauwkeurige analyse met behulp van het

numerieke model toont aan dat de deeltjes in het binnenste van het bed

naar het centrum van de heaps worden gestuwd door de luchtstroming

die ontstaat wanneer het bed loskomt van de trillende bodem. Als het

bed vervolgens weer landt, vinden er kleine lawines langs de hellingen van

de heuvels plaats. De hellingshoek van de heaps wordt bepaald door het

evenwicht tussen de constructieve stuwing van de lucht (de Stokesiaanse

krachten) en de destructieve lawines (de Newtoniaanse krachten).

In onze numerieke simulaties zien we ook dat de kleine heaps in

de loop van de tijd naar elkaar toe bewegen, samensmelten en grotere

heaps vormen, totdat uiteindelijk één enkele heap overblijft. Dit proces

(‘coarsening’ geheten) was reeds bekend uit experimenten, maar tot nu

toe slechts onvolledig begrepen. Dankzij het gedetailleerde beeld dat de

simulaties ons verschaffen, zijn we in staat een wiskundig model voor

het coarsening proces op te stellen, waarvan de resultaten uitstekend

overeenkomen met experimenten uitgevoerd in ons laboratorium. Eén

van de meest markante uitkomsten is dat de gemiddelde levensduur van

een N-heap toestand schaalt als N−3 in één dimensie (dat wil zeggen,

indien het experiment uitgevoerd wordt in een langwerpige bak) en als

N−2 in twee dimensies (in een rechthoekige bak).

Een tweede voorbeeld waarin de Stokesiaanse en Newtoniaanse krach-

ten in tegenovergestelde richting werken, is het klassieke experiment

van Ernst Chladni uit 1787. Hierbij worden de trillingspatronen van

een buigzame plaat zichtbaar gemaakt door er korreltjes op te strooien,

zoals zand of maanzaad, en vervolgens de plaat te exciteren met bijvoor-

beeld de strijkstok van een viool (zoals Chladni het zelf deed). Relatief

grote deeltjes (waarvoor de Newtoniaanse krachten de boventoon voeren)

verzamelen zich op de knooplijnen van de plaat, resulterend in de be-

kende Chladni-patronen. Kleinere deeltjes (die vatbaarder zijn voor de

Stokesiaanse krachten) bewegen juist naar de buiken toe. Chladni had

dit laatste ook reeds opgemerkt, zij het slechts als curiositeit, voor de

minuscule haartjes afkomstig van zijn strijkstok. In onze numerieke sim-

ulaties zijn we erin geslaagd zowel de standaard- als de inverse patronen

te reproduceren. Hierbij hebben we speciale aandacht besteed aan de

luchtstromingen die worden opgewekt boven de resonerende plaat, en

de wijze waarop deze aanleiding geven tot de vorming van de inverse

Chladni-patronen.

De luchtstroming blijkt echter niet het enige mechanisme te zijn
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dat tot de inverse patronen kan leiden: we tonen aan – theoretisch en

numeriek – dat wanneer de versnelling van de plaat kleiner is dan de

zwaartekrachtsversnelling g, de deeltjes altijd naar de buiken toe bewe-

gen, ongeacht hun grootte of gewicht. Tevens verklaren we waarom dit

fenomeen nooit is opgemerkt in de standaarduitvoering van het Chladni-

experiment.

Tenslotte onderzoeken we de uitstroom van een granulaire vloeistof

uit een container, zoals bijvoorbeeld een graansilo. Het is bekend dat de

uitstroomsnelheid, indien de wanden van de container gewoon stilstaan,

onafhankelijk is van de hoogte van de granulaire kolom. Algemeen werd

aangenomen dat dit terug te voeren is op het feit dat een aanzienlijk deel

van het gewicht van de kolom niet door de bodem van de silo gedragen

wordt, maar door de wanden. Wij laten echter zien dat wanneer de

wanden in horizontale trilling gebracht worden (waardoor het gewicht

wel volledig door de bodem wordt gedragen) de uitstroomsnelheid nog

steeds onafhankelijk is van de hoogte van de granulaire kolom. Pas

wanneer de opgelegde trilling van de wanden bijzonder heftig wordt,

begint de granulaire materie zich als een gewone vloeistof te gedragen,

dat wil zeggen, de uitstroomsnelheid wordt dan afhankelijk van de hoogte

van de kolom.

In dit proefschrift hebben we laten zien dat deeltjes met een diameter

kleiner dan 1.0 mm, waarvoor de Stokesiaanse en Newtoniaanse krachten

strijden om de hegemonie, interessante verschijnselen vertonen zoals de

formatie van Faraday heaps en inverse Chladni patronen. De numerieke

code heeft bewezen een accurate beschrijving te geven van de invloed van

de lucht op granulaire materie en is daarom bij uitstek geschikt voor het

simuleren van tal van verschijnselen waarin de omringende lucht een rol

speelt. Naast de reeds beschreven voorbeelden valt hierbij te denken aan

onder meer het ‘Brazil nut effect’ of de ‘granulaire jet’. Het is te voorzien

dat dezelfde code, met enkele aanpassingen, in de toekomst ook nuttig

ingezet zal kunnen worden bij het bestuderen van systemen waarvoor

naast de Newtoniaanse en Stokesiaanse krachten, ook de elektrostatische,

capillaire en Van der Waals krachten een rol van betekenis spelen.
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